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. pdf: Pr[X € (x,x + 8]] = fx(x)$.

CDF: PriX < x] = Fx(x) = [*_ fx(y)dy.

Ula, b], Expo(1), target.

Expectation: E[X] = [~ xfx(x)dx.

Variance: var[X] = E[(X — E[X])?] = E[X?] — E[X].

Variance of Sum of Independent RVs: If X, are pairwise
independent, var[Xi +---+ X,] = var[Xi] + - - + var[Xy]
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Calculate E[Y|X = x].
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Then,
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Now,
E[Y|X=x] = E[Y|APrlAX =x]+E[Y|APr[AX = x]
— 1% PriAX = x]+(1/3)Pr[AIX = x]... = ;:Z

We used Pr[Z € [x,x + 0]] = fz(x)é and given A one has

fx(x) = exp{—x} whereas given A one has fx(x) = 3exp{—3x}.
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Normal (Gaussian) Distribution.
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Normal (Gaussian) Distribution.

For any u and o, a normal (aka Gaussian) random variable Y,
which we write as Y = .4(u,6?), has pdf

1 2 /552
f =g y-n)7/20°,
y(¥) T

Standard normal has y =0 and ¢ =1.

[y (y) I —

— Y
'L+ 1.960

7
p+ 1.650

Note: Pr[|Y — u| > 1.650] = 10%; Pr[|Y — 1| > 20] = 5%.
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Review: Law of Large Numbers.

Theorem: Set of independent identically distributed random
variables, X;,
A, = 1Y X; “tends to the mean.”

Say X; have expectation u = E(X;) and variance ¢2.
Mean of A, is u, and variance is 62/n.
Used Chebyshev.

var[A, _ o®

— <
PrlAn—u| > e < 2200 = &

— 0.
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Let Xi,Xo,... be i.i.d. with mean u and variance 2. Let

An:7X1+M+X”.
n
The CLT states that
X1+ +Xn—nu
A(0,1) as n— oo.
sum o VOasns
Also,
(Ar—2-2 A, +2-% ]is a95%— Cl for .
Vn’ vn

Recall: Using Chebyshev, we found that

[An 45f A,,+45f

Thus, the CLT provides a smaller confidence interval.
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College | F. Appl. | F. Adm. | % F. Adm. | M. Appl. | M. Adm. | % M. Adm.
A 080 490 50% 200 80 40%
B 20 20 100% 80D 720 0%
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Applications/admissions by two [sic] genders two colleges of a

university.

Male admission rate 80% but female 51%!

But admission rate is larger for female students in both colleges....

More female applicants to college that admits fewer students.

Side note: average high school GPA is higher for female students.

Other example: On-time arrival for airlines.
If “hub” in chicago, that’s a problem overall.

GPA: stronger students take harder classes. Maybe.
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Statistics are often confusing:

» The average household annual income in the US is $72k.  Yes,
the median is $52k.

» The false alarm rate for prostate cancer is only 1%.
Still only 1 person in 8,000 has that cancer. Prior.
— there are 80 false alarms for each actual case.

» The Texas sharpshooter fallacy:
Shoot a barn. Paint target cluster. | am sharpshooter!
People living close to power lines.
You find clusters of cancers!
Also find such clusters when looking at people eating kale!

» False causation. Vaccines cause autism.
Both vaccination and autism rates increased....

» Beware of statistics reported in the media!
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Choosing at Random: Bertrand’s Paradox:poll.

» Choose a point A, choose second point X uniformly on circumference
(left).

» Choose a point X uniformly in the circle and draw chord perpendicular
to the radius that goes through X (center).

» Choose a point X uniformly on a given radius and draw the chord
perpendicular to the radius that goes through X (right).

Which is largest probability? (A) (B) (C)
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The figures corresponds to three ways of choosing a chord “at random.”
Probability chord is larger than |AB| of an inscribed equilateral triangle?

» Choose a point A, choose second point X uniformly on circumference
(left): 1/3

» Choose a point X uniformly in the circle and draw chord perpendicular
to the radius that goes through X (center): 1/4

» Choose a point X uniformly on a given radius and draw the chord
perpendicular to the radius that goes through X (right): 1/2
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information in a way that confirms one’s beliefs or hypotheses, while
giving less consideration to alternative possibilities.

Confirmation biases contribute to overconfidence in personal beliefs
and can maintain or strengthen beliefs in the face of contrary
evidence.

Three aspects:

» Biased search for information.
E.g., facebook friends effect, ignoring inconvenient articles.

» Biased interpretation.
E.g., valuing confirming versus contrary evidence.

» Biased memory.
E.g., remember facts that confirm beliefs and forget others.
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Confirmation Bias: An experiment

There are two bags.

One with 60% red balls and 40% blue balls;
the other with the opposite fractions.

One selects one of the two bags.

As one draws balls one at time, one asks people to declare whether
they think one draws from the first or second bag.

Surprisingly, people tend to be reinforced in their original belief, even
when the evidence accumulates against it.
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Report Data not Opinion!

A bag with 60% red, 40% blue or vice versa.

Each person pulls ball, reports opinion on which bag:
Says “majority blue” or “majority red.”

Does not say what color their ball is.
What happens if first two get blue balls?

Third hears two blue, so says blue, whatever she sees.
Plus Induction.

Everyone says blue...forever ...and ever.
Problem: Each person reported honest opinion rather than data!
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Being Rational: ‘Thinking, Fast and Slow’

In this book, Daniel Kahneman discusses examples of our irrationality.
Here are a few examples:

» A judge rolls a die in the morning.
In the afternoon, he has to sentence a criminal.
Statistically, morning roll high = sentence is high.

» People tend to be more convinced by articles printed in Times
Roman instead of Computer Modern Sans Serif.

» Perception illusions: Which horizontal line is longer?

It is difficult to think clearly!
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Really?

Judges at Lousiana give longer sentences when LSU gives upset
losses.

Judges give larger sentences when hungry.
Let’s check google and google scholar.
Uh oh.

Certainty is the enemy?
Unless you work hard!  You have the internet.
You have your intellect.

...and (most important) your integrity.
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You have learned a lot in this course!

Proofs, Graphs, Mod(p), RSA, Reed-Solomon, Decidability,
Probability, ... ,
how to handle stress, how to sleep less, how to keep smiling, ...
Difficult course? Perhaps. Mind expanding! | believe!!
Useful? You bet!
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Derivative of sine?

sin(x).
What is x? An angle in radians.
Let’s call it 6 and do derivative of sin 6.

0 - Length of arc of unit circle

Rise. Similar triangle!!!

“Run” is change in radians
which is ~length of
hypotenuse.
“Rise” is cosine times length of
hypotenuse.

Ratio of rise/run is cosine of angle!
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Arguments, reasoning.

What you know: slope, limit.
Plus: definition.

yields calculus.
Minimization, optimization, .....

Knowing how to program plus some syntax (google) gives the ability
to program.

Knowing how to reason plus some definition gives calculus.

Discrete Math: basics are counting, how many, when are two sets the
same size?

Probability: division.

...plus reasoning.
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CS188: Artificial Intelligence: Hidden Markov Chains, Bayes Networks,
Neural Networks.

CS189: Introduction to Machine Learning: Regression, Neural
Networks, Learning, etc. Programming experiments with real-world
applications.

EE121: Digital Communication: Coding for communication and storage.
EE223: Stochastic Control.
EE229A: Information Theory; EE229B: Coding Theory.
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More precisely: Some thoughts about the final ....
How to study for the final?
» Lecture Slides; Notes; Discussion Problems; HW
» Approximate Coverage: Probability 2/3, Discrete Math: 1/3.

» Every question topic covered in at least two places. Most will be
covered in all places.
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Thanks for taking the course!
Thanks to the CS70 Staff:
» The Terrific Tutors
» The Rigorous Readers
» The Thrilling TAs

» The Amazing Assistants

Good studying!!!



