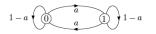
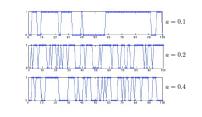


Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$. Here, *a* is the probability that the state changes in the next step.



Let's simulate the Markov chain:

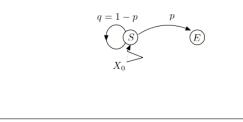


Hitting Time - Example 1

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

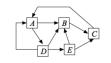
Let's define a Markov chain:

- ► X₀ = S (start)
- ► $X_n = S$ for $n \ge 1$, if last flip was T and no H yet
- $X_n = E$ for $n \ge 1$, if we already got H (end)

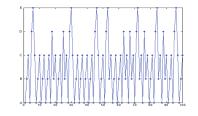


Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.

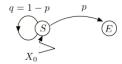


Let's simulate the Markov chain:



First Passage Time - Example 1. Poll

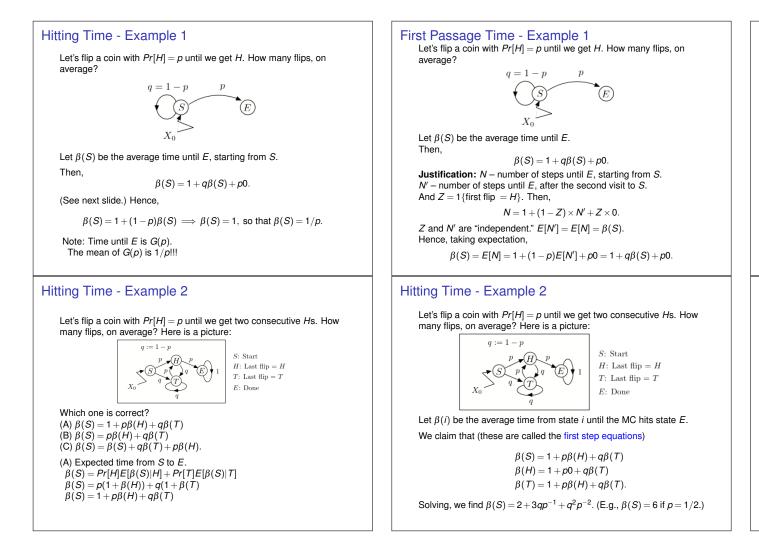
Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?



Let $\beta(S)$ be the average time until *E*, starting from *S*. What is correct? (A) $\beta(S)$ is at least 1. (B) From *S*, in one step, go to *S* with prob. q = 1 - p(C) From *S*, in one step, go to *E* with prob. *p*.

(D) If you go back to *S*, you are back at *S*. (D) $\beta(S) = 1 + q\beta(S) + p0$.

All are correct. (D) is the "Markov property." Only know where you are.



Hitting Time - Example 2

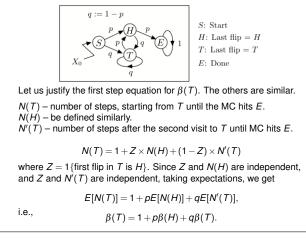
Let's flip a coin with Pr[H] = p until we get two consecutive *H*s. How many flips, on average?

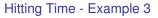
НТНТТТНТНТНТТНТНН

Let's define a Markov chain:

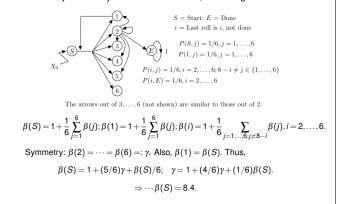
- ► *X*₀ = *S* (start)
- $X_n = E$, if we already got two consecutive Hs (end)
- $X_n = T$, if last flip was T and we are not done
- $X_n = H$, if last flip was H and we are not done

Hitting Time - Example 2



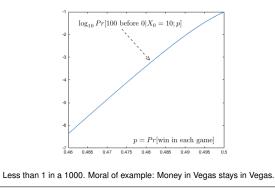


You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?



Here before There - A before B

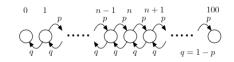
Game of "heads or tails" using coin with 'heads' probability p = .48. Start with \$10. Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



Here before There - A before B

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10.

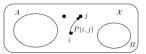
Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?



Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \dots, 100$. Which equations are correct? (A) $\alpha(0) = 0$ (B) $\alpha(0) = 1$. (C) $\alpha(100) = 1$. (D) $\alpha(n) = 1 + p\alpha(n+1) + q\alpha(n-1), 0 < n < 100$. (E) $\alpha(n) = p\alpha(n+1) + q\alpha(n-1), 0 < n < 100$.

(B) is incorrect, 0 is bad.(D) is incorrect. Confuses expected hitting time with A before B.

First Step Equations



Let X_n be a MC on \mathscr{X} and $A, B \subset \mathscr{X}$ with $A \cap B = \emptyset$. Define $T_A = \min\{n \ge 0 \mid X_n \in A\}$ and $T_B = \min\{n \ge 0 \mid X_n \in B\}$.

For $\beta(i) = E[T_A \mid X_0 = i]$, first step equations are: $\beta(i) = 0, i \in A$ $\beta(i) = 1 + \sum_j P(i,j)\beta(j), i \notin A$ For $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathscr{X}$, first step equations are: $\alpha(i) = 1, i \in A$ $\alpha(i) = 0, i \in B$ $\alpha(i) = \sum_j P(i,j)\alpha(j), i \notin A \cup B.$

Here before There - A before B

Game of "heads or tails" using coin with 'heads' probability p < 0.5. Start with \$10. Each step, flip yields 'heads', earn \$1. Otherwise, lose \$1. What is the probability that you reach \$100 before \$0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from *n*, for n = 0, 1, ..., 100.

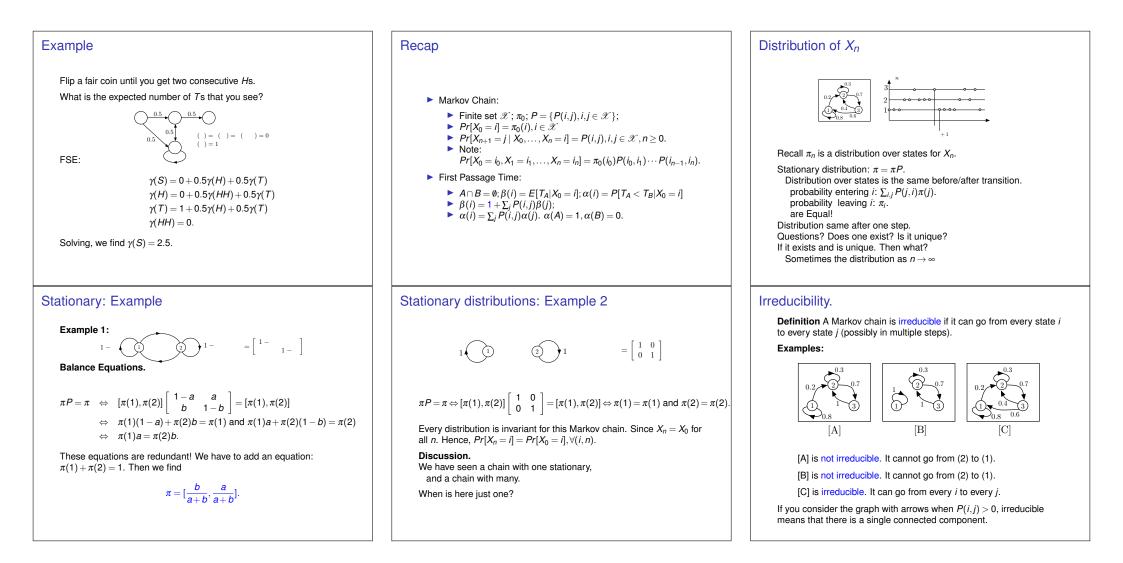
$$\alpha(0) = 0; \alpha(100) = 1.$$

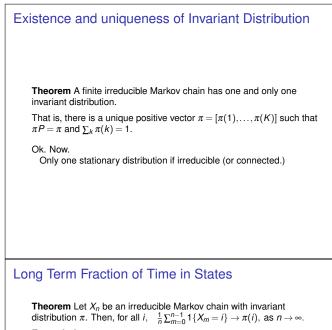
 $\alpha(n) = p\alpha(n+1) + q\alpha(n-1), 0 < n < 100.$

$$\Rightarrow \alpha(n) = \frac{1-\rho^n}{1-\rho^{100}}$$
 with $\rho = qp^{-1}$. (See LN 22)

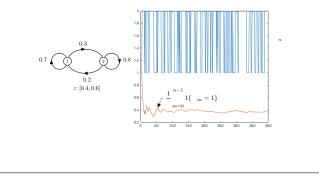
Accumulating Rewards

```
Let X_n be a Markov chain on \mathscr{X} with P. Let A \subset \mathscr{X}
Let also g : \mathscr{X} \to \mathfrak{R} be some function.
Define
\gamma(i) = E[\sum_{n=0}^{T_A} g(X_n) | X_0 = i], i \in \mathscr{X}.Then
\gamma(i) = \begin{cases} g(i), & \text{if } i \in A\\ g(i) + \sum_j P(i,j)\gamma(j), & \text{otherwise.} \end{cases}
```





Example 2:



Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π .

Then, for all *i*,

$$\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

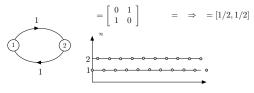
The left-hand side is the fraction of time that $X_m = i$ during steps 0, 1, ..., n - 1. Thus, this fraction of time approaches $\pi(i)$.

Proof: Lecture note 21 gives a plausibility argument.

Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π ?

Answer: Not necessarily. Here is an example:

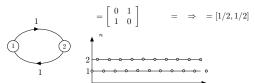


Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$

Thus, if $\pi_0 = [1,0]$, $\pi_1 = [0,1]$, $\pi_2 = [1,0]$, $\pi_3 = [0,1]$, etc. Hence, π_n does not converge to $\pi = [1/2, 1/2]$. Notice, all cycles or closed walks have even length.

Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \rightarrow \pi(i)$, as $n \rightarrow \infty$. **Example 1:**

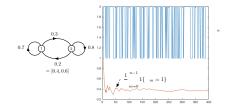


The fraction of time in state 1 converges to 1/2, which is $\pi(1)$.

Convergence to stationary distribution.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π . Then, for all i, $\frac{1}{n}\sum_{m=0}^{n-1} 1\{X_m = i\} \rightarrow \pi(i)$, as $n \rightarrow \infty$.

Example 2:



As n gets large the probability of being in either state approaches 1/2. (The stationary distribution.) Notice cycles of length 1 and 2.

Periodicity

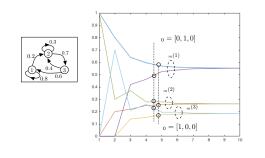
Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2. Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic. Example [] Which one is converges to stationary? (A) [A] (B) [B] (C) both (D) neither. (A). [A]: Closed walks of length 3 and length 4 \implies periodicity = 1. [B]: All closed walks multiple of 3 \implies periodicity =2. Summary Markov Chains • Markov Chain: $Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$ FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$ $\blacktriangleright \pi_n = \pi_0 P^n$ • π is invariant iff $\pi P = \pi$ • Irreducible \Rightarrow one and only one invariant distribution π ▶ Irreducible \Rightarrow fraction of time in state *i* approaches $\pi(i)$ lrreducible + Aperiodic $\Rightarrow \pi_n \rightarrow \pi$. • Calculating π : One finds $\pi = [0, 0, ..., 1]Q^{-1}$ where $Q = \cdots$.

Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,

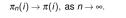
 $\pi_n(i) \to \pi(i)$, as $n \to \infty$.

Example



Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π . Then, for all $i \in \mathcal{X}$,



Example

