

Linear Regression: wrapup.

Linear Regression: wrapup. How do I love *e*?

Linear Regression: wrapup. How do I love *e*? Balls in Bins.

Linear Regression: wrapup.

How do I love e?

Balls in Bins.

Birthday.

Linear Regression: wrapup.

How do I love e?

Balls in Bins.

Birthday. Coupon Collector.

Linear Regression: wrapup.

How do I love e?

Balls in Bins.

Birthday. Coupon Collector. Load balancing.

Linear Regression: wrapup.

How do I love e?

Balls in Bins.

Birthday. Coupon Collector. Load balancing.

Linear Regression: wrapup.

How do I love e?

Balls in Bins.

Birthday. Coupon Collector. Load balancing.

Poisson Distribution: Sum of two Poissons is Poisson.

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator? Or what is the mean squared estimation error?

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

Or what is the mean squared estimation error?

We find

$$E[|Y - L[Y|X]|^{2}] = E[(Y - E[Y] - (cov(X, Y) / var(X))(X - E[X]))^{2}]$$

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

Or what is the mean squared estimation error?

We find

$$E[|Y - L[Y|X]|^{2}] = E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^{2}]$$

= $E[(Y - E[Y])^{2}] - 2\frac{cov(X, Y)}{var(X)}E[(Y - E[Y])(X - E[X])]$
+ $(\frac{cov(X, Y)}{var(X)})^{2}E[(X - E[X])^{2}]$

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

Or what is the mean squared estimation error?

We find

$$\begin{split} \mathsf{E}[|Y - L[Y|X]|^2] &= \mathsf{E}[(Y - \mathsf{E}[Y] - (\operatorname{cov}(X, Y)/\operatorname{var}(X))(X - \mathsf{E}[X]))^2] \\ &= \mathsf{E}[(Y - \mathsf{E}[Y])^2] - 2\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)} \mathsf{E}[(Y - \mathsf{E}[Y])(X - \mathsf{E}[X])] \\ &+ (\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)})^2 \mathsf{E}[(X - \mathsf{E}[X])^2] \\ &= \operatorname{var}(Y) - \frac{\operatorname{cov}(X, Y)^2}{\operatorname{var}(X)}. \end{split}$$

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

Or what is the mean squared estimation error?

We find

$$\begin{split} & E[|Y - L[Y|X]|^2] = E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^2] \\ &= E[(Y - E[Y])^2] - 2\frac{cov(X, Y)}{var(X)}E[(Y - E[Y])(X - E[X])] \\ &\quad + (\frac{cov(X, Y)}{var(X)})^2E[(X - E[X])^2] \\ &= var(Y) - \frac{cov(X, Y)^2}{var(X)}. \end{split}$$

Without observations, the estimate is E[Y].

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

Or what is the mean squared estimation error?

We find

$$\begin{split} E[|Y - L[Y|X]|^2] &= E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^2] \\ &= E[(Y - E[Y])^2] - 2\frac{cov(X, Y)}{var(X)}E[(Y - E[Y])(X - E[X])] \\ &+ (\frac{cov(X, Y)}{var(X)})^2E[(X - E[X])^2] \\ &= var(Y) - \frac{cov(X, Y)^2}{var(X)}. \end{split}$$

Without observations, the estimate is E[Y]. The error is var(Y).

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

Or what is the mean squared estimation error?

We find

$$\begin{split} E[|Y - L[Y|X]|^2] &= E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^2] \\ &= E[(Y - E[Y])^2] - 2\frac{cov(X, Y)}{var(X)}E[(Y - E[Y])(X - E[X])] \\ &+ (\frac{cov(X, Y)}{var(X)})^2E[(X - E[X])^2] \\ &= var(Y) - \frac{cov(X, Y)^2}{var(X)}. \end{split}$$

Without observations, the estimate is E[Y]. The error is var(Y). Observing X reduces the error.

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

Or what is the mean squared estimation error?

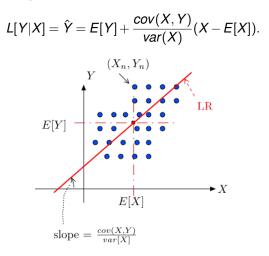
We find

$$\begin{split} E[|Y - L[Y|X]|^2] &= E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^2] \\ &= E[(Y - E[Y])^2] - 2\frac{cov(X, Y)}{var(X)}E[(Y - E[Y])(X - E[X])] \\ &+ (\frac{cov(X, Y)}{var(X)})^2E[(X - E[X])^2] \\ &= var(Y) - \frac{cov(X, Y)^2}{var(X)}. \end{split}$$

Without observations, the estimate is E[Y]. The error is var(Y). Observing X reduces the error.

Dividing by var(Y), one gets reduction: $\frac{(cov(X,Y))^2}{var(Y)var(Y)} = (corr(X,Y))^2 = r^2$.

LR: Another Figure



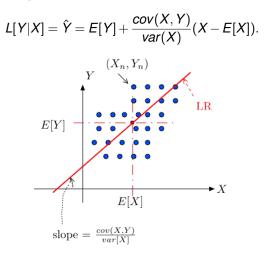
LR: Another Figure



Note that

► the LR line goes through (E[X], E[Y])

LR: Another Figure



Note that

► the LR line goes through (E[X], E[Y])

• its slope is
$$\frac{cov(X,Y)}{var(X)}$$

Let X, Y be two random variables defined on the same probability space.

Let X, Y be two random variables defined on the same probability space.

Definition:

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

 $Q[Y|X] = a + bX + cX^2$

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of *Y* over *X* is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of *Y* over *X* is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation:

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of *Y* over *X* is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^{2})X] = E[XY] - a - bE[X^{2}] - cE[X^{3}]$$

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^{2})X] = E[XY] - a - bE[X^{2}] - cE[X^{3}]$$

$$0 = E[(Y - a - bX - cX^2)X^2] = E[X^2Y] - aE[X^2] - bE[X^3] - cE[X^4]$$

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^{2})X] = E[XY] - a - bE[X^{2}] - cE[X^{3}]$$

$$0 = E[(Y - a - bX - cX^2)X^2] = E[X^2Y] - aE[X^2] - bE[X^3] - cE[X^4]$$

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^{2})X] = E[XY] - a - bE[X^{2}] - cE[X^{3}]$$

$$0 = E[(Y - a - bX - cX^2)X^2] = E[X^2Y] - aE[X^2] - bE[X^3] - cE[X^4]$$

We solve these three equations in the three unknowns (a, b, c).

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^{2})X] = E[XY] - a - bE[X^{2}] - cE[X^{3}]$$

$$0 = E[(Y - a - bX - cX^2)X^2] = E[X^2Y] - aE[X^2] - bE[X^3] - cE[X^4]$$

We solve these three equations in the three unknowns (a, b, c).

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^2)X] = E[XY] - a - bE[X^2] - cE[X^3]$$

$$0 = E[(Y - a - bX - cX^2)X^2] = E[X^2Y] - aE[X^2] - bE[X^3] - cE[X^4]$$

We solve these three equations in the three unknowns (a, b, c).

For linear regression, L[Y|X], approach gives:

Quadratic Regression

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^2)X] = E[XY] - a - bE[X^2] - cE[X^3]$$

$$0 = E[(Y - a - bX - cX^2)X^2] = E[X^2Y] - aE[X^2] - bE[X^3] - cE[X^4]$$

We solve these three equations in the three unknowns (a, b, c).

For linear regression, L[Y|X], approach gives:

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Let me count the ways.

Let me count the ways.

What is e?

Let me count the ways.

What is *e*? For a function $f(x) = e^x$, $f'(x) = e^x$.

Let me count the ways.

What is *e*?
For a function
$$f(x) = e^x$$
, $f'(x) = e^x$.
Another view: $\frac{dy}{dx} = y$.

Let me count the ways.

What is *e*? For a function $f(x) = e^x$, $f'(x) = e^x$. Another view: $\frac{dy}{dx} = y$. More money you have the faster you gain money.

Let me count the ways.

What is *e*? For a function $f(x) = e^x$, $f'(x) = e^x$. Another view: $\frac{dy}{dx} = y$. More money you have the faster you gain money. More rabbits there are, the more rabbits you get.

Let me count the ways.

What is *e*? For a function $f(x) = e^x$, $f'(x) = e^x$. Another view: $\frac{dy}{dx} = y$. More money you have the faster you gain money. More rabbits there are, the more rabbits you get. More people with a disease the faster it grows:

Let me count the ways.

What is *e*? For a function $f(x) = e^x$, $f'(x) = e^x$. Another view: $\frac{dy}{dx} = y$. More money you have the faster you gain money. More rabbits there are, the more rabbits you get. More people with a disease the faster it grows: Epidemiologists:reproduction rate, *R*.

Let me count the ways.

What is e?

For a function
$$f(x) = e^x$$
, $f'(x) = e^x$.

Another view: $\frac{dy}{dx} = y$.

More money you have the faster you gain money. More rabbits there are, the more rabbits you get. More people with a disease the faster it grows:

Epidemiologists:reproduction rate, R.

Discrete version: $x_{n+1} - x_n = \Delta(x_n) = x_n$.

Let me count the ways.

What is e?

For a function
$$f(x) = e^x$$
, $f'(x) = e^x$.

Another view: $\frac{dy}{dx} = y$.

More money you have the faster you gain money. More rabbits there are, the more rabbits you get. More people with a disease the faster it grows:

Epidemiologists:reproduction rate, R.

Discrete version: $x_{n+1} - x_n = \Delta(x_n) = x_n$. $x_n = 2^n$, for $x_0 = 1$.

Let me count the ways.

What is e?

For a function
$$f(x) = e^x$$
, $f'(x) = e^x$.

Another view: $\frac{dy}{dx} = y$.

More money you have the faster you gain money. More rabbits there are, the more rabbits you get. More people with a disease the faster it grows:

Epidemiologists:reproduction rate, R.

Discrete version: $x_{n+1} - x_n = \Delta(x_n) = x_n$. $x_n = 2^n$, for $x_0 = 1$.

For a function $f(x) = e^x$, $f'(x) = e^x$.

For a function $f(x) = e^x$, $f'(x) = e^x$.

For a function $f(x) = e^x$, $f'(x) = e^x$. What is this f'(x)?

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)? Slope of the tangent line.

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)? Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

And
$$f(x) = e^x$$
, $f(x + 1/n) = e^{x+1/n} = e^x e^{1/n}$, so
 $f'(x) \approx \frac{e^x(e^{1/n} - 1)}{1/n}$

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

And
$$f(x) = e^x$$
, $f(x+1/n) = e^{x+1/n} = e^x e^{1/n}$, so
 $f'(x) \approx \frac{e^x (e^{1/n} - 1)}{1/n} = e^x \frac{e^{1/n} - 1}{1/n}$

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

And
$$f(x) = e^x$$
, $f(x+1/n) = e^{x+1/n} = e^x e^{1/n}$, so
 $f'(x) \approx \frac{e^x (e^{1/n} - 1)}{1/n} = e^x \frac{e^{1/n} - 1}{1/n} \approx e^x$

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

for large n.

And $f(x) = e^x$, $f(x+1/n) = e^{x+1/n} = e^x e^{1/n}$, so

$$f'(x) \approx \frac{e^{x}(e^{1/n}-1)}{1/n} = e^{x} \frac{e^{1/n}-1}{1/n} \approx e^{x}$$

$$\implies \frac{e^{1/n}-1}{1/n} \approx 1$$

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

for large n.

And $f(x) = e^x$, $f(x+1/n) = e^{x+1/n} = e^x e^{1/n}$, so

$$f'(x) \approx \frac{e^{x}(e^{1/n}-1)}{1/n} = e^{x} \frac{e^{1/n}-1}{1/n} \approx e^{x}$$

$$\implies \frac{e^{1/n}-1}{1/n} \approx 1 \implies e^{1/n} = 1/n$$

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

for large n.

And $f(x) = e^x$, $f(x+1/n) = e^{x+1/n} = e^x e^{1/n}$, so

$$f'(x) \approx \frac{e^{x}(e^{1/n}-1)}{1/n} = e^{x} \frac{e^{1/n}-1}{1/n} \approx e^{x}$$

$$\implies \frac{e^{1/n}-1}{1/n} \approx 1 \implies e^{1/n} = 1/n \implies e \approx (1+1/n)^n.$$

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

for large n.

And $f(x) = e^x$, $f(x+1/n) = e^{x+1/n} = e^x e^{1/n}$, so

$$f'(x) \approx \frac{e^{x}(e^{1/n}-1)}{1/n} = e^{x} \frac{e^{1/n}-1}{1/n} \approx e^{x}$$

$$\Rightarrow \frac{e^{1/n}-1}{1/n} \approx 1 \Rightarrow e^{1/n} = 1/n \Rightarrow e \approx (1+1/n)^n.$$

Continuous compounded interest: rate r.

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

for large n.

And $f(x) = e^x$, $f(x+1/n) = e^{x+1/n} = e^x e^{1/n}$, so

$$f'(x) \approx \frac{e^{x}(e^{1/n}-1)}{1/n} = e^{x} \frac{e^{1/n}-1}{1/n} \approx e^{x}$$

$$\implies \frac{e^{1/n}-1}{1/n} \approx 1 \implies e^{1/n} = 1/n \implies e \approx (1+1/n)^n.$$

Continuous compounded interest: rate r. break time into intervals of size 1/n.

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

for large n.

And $f(x) = e^x$, $f(x+1/n) = e^{x+1/n} = e^x e^{1/n}$, so

$$f'(x) \approx \frac{e^{x}(e^{1/n}-1)}{1/n} = e^{x} \frac{e^{1/n}-1}{1/n} \approx e^{x}$$

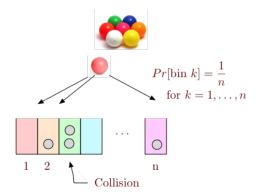
$$\implies \frac{e^{1/n}-1}{1/n} \approx 1 \implies e^{1/n} = 1/n \implies e \approx (1+1/n)^n.$$

Continuous compounded interest: rate *r*. break time into intervals of size 1/n. $(1+r/n)^n \rightarrow ((1+r/n)^{n/r})^r \rightarrow e^r$.

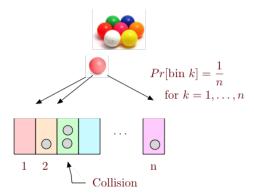
One throws *m* balls into n > m bins.

One throws *m* balls into n > m bins.

One throws *m* balls into n > m bins.



One throws *m* balls into n > m bins.

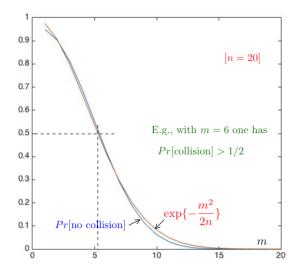


Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$



Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

 $m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$.

Balls in bins

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[no \text{ collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$.

Roughly, *Pr*[collision] $\approx 1/2$ for $m = \sqrt{n}$.

Balls in bins

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[no \text{ collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$.

Roughly, $Pr[collision] \approx 1/2$ for $m = \sqrt{n}$. $(e^{-0.5} \approx 0.6.)$

 A_i = no collision when *i*th ball is placed in a bin.

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$

no collision = $A_1 \cap \cdots \cap A_m$.

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$

no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$

no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

 $Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n})$$

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1-\frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx$$

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx -\frac{m^2}{2n}$$

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \dots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx -\frac{m^2}{2n}$$

(*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$.

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \dots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$

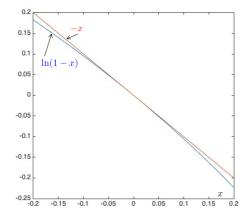
$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

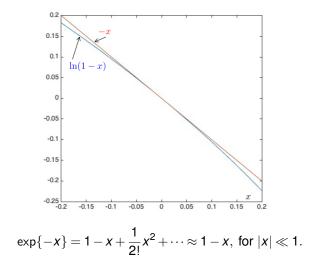
$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx -\frac{m^2}{2n}$$

(*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$. (†) $1+2+\cdots+m-1 = (m-1)m/2$.

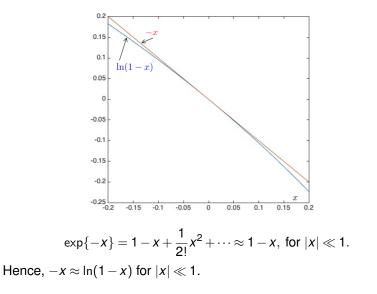
Approximation



Approximation



Approximation



Probability that *m* people all have different birthdays?

Probability that *m* people all have different birthdays? With n = 365, one finds

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] =

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] = 0. (No approximation here!)

Experiment: *m* balls into *n* bins uniformly at random.

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

 $X_{ij} = 1$ {balls *i*, *j* in same bin}

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

 $X_{ij} = 1$ {balls *i*, *j* in same bin}

 $X = \sum_{ij} X_{ij}$

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

 $X_{ij} = 1$ {balls *i*, *j* in same bin}

 $X = \sum_{ij} X_{ij}$

 $E[X_{ij}] = Pr[balls i, j \text{ in same bin}] = \frac{1}{n}.$

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

 $X_{ij} = 1$ {balls *i*, *j* in same bin}

 $X = \sum_{ij} X_{ij}$

 $E[X_{ij}] = Pr[balls i, j \text{ in same bin}] = \frac{1}{n}.$

Ball *i* in some bin, ball *j* chooses that bin with probability 1/n.

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

 $X_{ij} = 1$ {balls *i*, *j* in same bin}

 $X = \sum_{ij} X_{ij}$

 $E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}.$

Ball *i* in some bin, ball *j* chooses that bin with probability 1/n.

 $E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}.$

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

 $X_{ij} = 1$ {balls *i*, *j* in same bin}

 $X = \sum_{ij} X_{ij}$

 $E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}.$

Ball *i* in some bin, ball *j* chooses that bin with probability 1/n.

 $E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}.$ For $m = \sqrt{n}$, E[X] = 1/2

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

 $X_{ij} = 1$ {balls *i*, *j* in same bin}

 $X = \sum_{ij} X_{ij}$

 $E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}.$

Ball *i* in some bin, ball *j* chooses that bin with probability 1/n.

 $E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}.$ For $m = \sqrt{n}$, E[X] = 1/2Markov: $Pr[X \ge c] \le \frac{EX}{c}.$

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs *i* and *j* where ball *i* and ball *j* are in same bin.

 $X_{ij} = 1$ {balls *i*, *j* in same bin}

 $X = \sum_{ij} X_{ij}$

 $E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}.$

Ball *i* in some bin, ball *j* chooses that bin with probability 1/n.

 $E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}.$ For $m = \sqrt{n}$, E[X] = 1/2Markov: $Pr[X \ge c] \le \frac{EX}{c}.$ $Pr[X \ge 1] \le \frac{E[X]}{1} = 1/2.$

Checksums!

Consider a set of *m* files.

Consider a set of m files. Each file has a checksum of b bits.

Consider a set of *m* files.

Each file has a checksum of *b* bits.

How large should *b* be for *Pr*[share a checksum] $\leq 10^{-3}$?

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

```
Claim: b \ge 2.9 \ln(m) + 9.
```

Proof:

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums.

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\}$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

 $Pr[\text{no collision}] \approx 1 - 10^{-3}$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m). \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m). \end{aligned}$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem:

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy *m* boxes, (a) $Pr[miss one specific item] \approx e^{-\frac{m}{n}}$

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

- (a) $Pr[miss one specific item] \approx e^{-\frac{m}{n}}$
- (b) $Pr[\text{miss any one of the items}] \le ne^{-\frac{m}{n}}$.

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes'

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$ Fail the second time: $(1 - \frac{1}{n})$

$$Pr[A_m] = (1-\frac{1}{n}) \times \cdots \times (1-\frac{1}{n})$$

$$Pr[A_m] = (1-\frac{1}{n}) \times \cdots \times (1-\frac{1}{n})$$
$$= (1-\frac{1}{n})^m$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = mln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
$$Pr[A_m] \approx exp\{-\frac{m}{n}\}.$$

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$ Fail the second time: $(1 - \frac{1}{n})$ And so on ... for *m* times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = mln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
$$Pr[A_m] \approx exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69n$ boxes.

Collect all cards?

Experiment: Choose *m* cards at random with replacement.

Collect all cards?

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n

Collect all cards?

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

 $p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*?

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

 $\rho = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$\rho := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

$$\rho = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \dots, n.$$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

$$p = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}$$
.

Thus,

Pr[missing at least one card $] \le ne^{-\frac{m}{n}}.$

Thus,

$$Pr[$$
missing at least one card $] \le ne^{-\frac{m}{n}}$.

Hence,

$$Pr[$$
missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

Thus,

$$Pr[$$
missing at least one card $] \le ne^{-\frac{m}{n}}$.

Hence,

$$Pr[$$
missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$.

Thus,

$$Pr[$$
missing at least one card $] \le ne^{-\frac{m}{n}}$.

Hence,

$$Pr[$$
missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$. $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p.)$

Thus,

$$Pr[$$
missing at least one card $] \le ne^{-\frac{m}{n}}$.

Hence,

$$Pr[$$
missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get
$$p = 1/2$$
, set $m = n \ln (2n)$.
 $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p.)$
E.g., $n = 10^2 \Rightarrow m = 530$;

Thus,

$$Pr[$$
missing at least one card $] \le ne^{-\frac{m}{n}}$.

Hence,

$$Pr[$$
missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get
$$p = 1/2$$
, set $m = n \ln (2n)$.
 $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p.)$
E.g., $n = 10^2 \Rightarrow m = 530; n = 10^3 \Rightarrow m = 7600.$

X-time to get *n* coupons.

X-time to get *n* coupons.

 X_1 - time to get first coupon.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X-time to get *n* coupons.

- X_1 time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 time to get second coupon after getting first.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

"]

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk

X-time to get *n* coupons.

- X_1 time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]?$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric !

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

E[*X*₂]? Geometric ! !

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

```
E[X<sub>2</sub>]? Geometric !!!
```

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} =$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* - 1rst coupons"] = $\frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* – 1rst coupons"] = $\frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i]$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* – 1rst coupons" $] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i] = \frac{1}{p}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting$ *i*th coupon|"got*i* $- 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, \end{aligned}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, i = 1, 2, \dots, n. \end{aligned}$

 $E[X] = E[X_1] + \cdots + E[X_n] =$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n)$$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Review: Harmonic sum

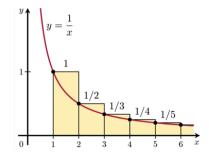
.

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

Review: Harmonic sum

.

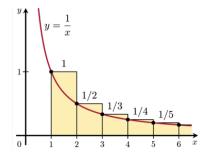
$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$



Review: Harmonic sum

٠

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$



A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Load balance: *m* balls in *n* bins.

Load balance: m balls in n bins. For simplicity: n balls in n bins.

Load balance: *m* balls in *n* bins. For simplicity: *n* balls in *n* bins. Round robin:

Load balance: m balls in n bins. For simplicity: n balls in n bins. Round robin: load 1

Load balance: *m* balls in *n* bins. For simplicity: *n* balls in *n* bins. Round robin: load 1 !

Load balance: *m* balls in *n* bins. For simplicity: *n* balls in *n* bins. Round robin: load 1 ! Centralized!

Load balance: *m* balls in *n* bins. For simplicity: *n* balls in *n* bins. Round robin: load 1 ! Centralized! Not so good.

Load balance: *m* balls in *n* bins. For simplicity: *n* balls in *n* bins. Round robin: load 1 ! Centralized! Not so good. Uniformly at random?

Load balance: *m* balls in *n* bins. For simplicity: *n* balls in *n* bins. Round robin: load 1 ! Centralized! Not so good. Uniformly at random? Average load

Load balance: *m* balls in *n* bins. For simplicity: *n* balls in *n* bins. Round robin: load 1 ! Centralized! Not so good. Uniformly at random? Average load 1.

Load balance: *m* balls in *n* bins. For simplicity: *n* balls in *n* bins. Round robin: load 1 ! Centralized! Not so good. Uniformly at random? Average load 1. Max load?

Load balance: *m* balls in *n* bins.

For simplicity: *n* balls in *n* bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n.

Load balance: *m* balls in *n* bins.

For simplicity: *n* balls in *n* bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Load balance: *m* balls in *n* bins.

For simplicity: *n* balls in *n* bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Load balance: *m* balls in *n* bins.

For simplicity: *n* balls in *n* bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

$$\delta = rac{1}{n^c}$$
 for today.

Load balance: *m* balls in *n* bins.

For simplicity: *n* balls in *n* bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

$$\delta = \frac{1}{n^c}$$
 for today. *c* is 1 or 2.

Load balance: *m* balls in *n* bins.

For simplicity: *n* balls in *n* bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

$$\delta = \frac{1}{n^c}$$
 for today. *c* is 1 or 2.

For each of *n* balls, choose random bin:

For each of *n* balls, choose random bin: X_i balls in bin *i*.

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S|=k} Pr[$ balls in *S* chooses bin *i*]

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S|=k} Pr[$ balls in *S* chooses bin *i*]From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S|=k} Pr[$ balls in *S* chooses bin *i*] From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$ Pr[balls in *S* chooses bin *i*] = $(\frac{1}{n})^k$

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S|=k} Pr[$ balls in *S* chooses bin *i*] From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$ Pr[balls in *S* chooses bin *i*] = $(\frac{1}{n})^k$ and $\binom{n}{k}$ subsets *S*.

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S|=k} Pr[$ balls in *S* chooses bin *i*] From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$ Pr[balls in *S* chooses bin *i*] = $(\frac{1}{n})^k$ and $\binom{n}{k}$ subsets *S*. $Pr[X_i \ge k] \le \binom{n}{k} \left(\frac{1}{n}\right)^k$ $\le \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S| = k} Pr[$ balls in *S* chooses bin *i*] From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$ Pr[balls in *S* chooses bin *i*] = $(\frac{1}{n})^k$ and $\binom{n}{k}$ subsets *S*. $Pr[X_i \ge k] \le \binom{n}{k} \left(\frac{1}{n}\right)^k$ $\le \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$

Choose k, so that $Pr[X_i \ge k] \le \frac{1}{n^2}$.

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S| = k} Pr[$ balls in *S* chooses bin *i*] From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$ Pr[balls in *S* chooses bin *i*] = $(\frac{1}{n})^k$ and $\binom{n}{k}$ subsets *S*. $Pr[X_i \ge k] \le \binom{n}{k} \left(\frac{1}{n}\right)^k$ $\le \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$

Choose k, so that $Pr[X_i \ge k] \le \frac{1}{n^2}$. $Pr[any X_i \ge k] \le n \times \frac{1}{n^2}$

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S| = k} Pr[$ balls in *S* chooses bin *i*] From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$ Pr[balls in *S* chooses bin *i*] = $(\frac{1}{n})^k$ and $\binom{n}{k}$ subsets *S*. $Pr[X_i \ge k] \le \binom{n}{k} \left(\frac{1}{n}\right)^k$ $\le \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$

Choose k, so that $Pr[X_i \ge k] \le \frac{1}{n^2}$. $Pr[any X_i \ge k] \le n \times \frac{1}{n^2} = \frac{1}{n}$

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S| = k} Pr[$ balls in *S* chooses bin *i*] From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$ Pr[balls in *S* chooses bin *i*] = $(\frac{1}{n})^k$ and $\binom{n}{k}$ subsets *S*. $Pr[X_i \ge k] \le \binom{n}{k} \left(\frac{1}{n}\right)^k$ $\le \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$

Choose *k*, so that $Pr[X_i \ge k] \le \frac{1}{n^2}$. $Pr[\text{any } X_i \ge k] \le n \times \frac{1}{n^2} = \frac{1}{n} \to \text{max load} \le k \text{ w.p.} \ge 1 - \frac{1}{n}$

For each of *n* balls, choose random bin: X_i balls in bin *i*. $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S| = k} Pr[$ balls in *S* chooses bin *i*] From Union Bound: $Pr[\cup_i A_i] \le \sum_i Pr[A_i]$ Pr[balls in *S* chooses bin *i*] = $(\frac{1}{n})^k$ and $\binom{n}{k}$ subsets *S*. $Pr[X_i \ge k] \le \binom{n}{k} \left(\frac{1}{n}\right)^k$ $\le \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$

Choose *k*, so that $Pr[X_i \ge k] \le \frac{1}{n^2}$. $Pr[\text{any } X_i \ge k] \le n \times \frac{1}{n^2} = \frac{1}{n} \to \text{max load} \le k \text{ w.p.} \ge 1 - \frac{1}{n}$

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\ge 1 - \frac{1}{n}$.

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.)

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.) $\implies \frac{1}{k!} \leq (\frac{e}{k})^k \leq (\frac{1}{2\log n})^k$

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.) $\implies \frac{1}{k!} \leq (\frac{e}{k})^k \leq (\frac{1}{2\log n})^k$ If $\log n \geq 1$, then $k = 2e \log n$ suffices.

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.) $\implies \frac{1}{k!} \leq (\frac{e}{k})^k \leq (\frac{1}{2\log n})^k$ If $\log n \geq 1$, then $k = 2e \log n$ suffices.

Also: $k = \Theta(\log n / \log \log n)$ suffices as well.

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.) $\implies \frac{1}{k!} \leq (\frac{e}{k})^k \leq (\frac{1}{2\log n})^k$ If $\log n \geq 1$, then $k = 2e \log n$ suffices. Also: $k = \Theta(\log n / \log \log n)$ suffices as well. $k^k \rightarrow n^c$.

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.) $\implies \frac{1}{k!} \leq (\frac{e}{k})^k \leq \left(\frac{1}{2\log n}\right)^k$ If $\log n \geq 1$, then $k = 2e \log n$ suffices. Also: $k = \Theta(\log n / \log \log n)$ suffices as well. $k^k \rightarrow n^c$.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.) $\implies \frac{1}{k!} \leq (\frac{e}{k})^k \leq (\frac{1}{2\log n})^k$ If $\log n \geq 1$, then $k = 2e \log n$ suffices. Also: $k = \Theta(\log n / \log \log n)$ suffices as well. $k^k \rightarrow n^c$.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.

(W.h.p. - means with probability at least $1 - O(1/n^c)$ for today.)

 $Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$. $k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.) $\implies \frac{1}{k!} \leq (\frac{e}{k})^k \leq (\frac{1}{2\log n})^k$ If $\log n \geq 1$, then $k = 2e \log n$ suffices. Also: $k = \Theta(\log n / \log \log n)$ suffices as well. $k^k \rightarrow n^c$.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.

(W.h.p. - means with probability at least $1 - O(1/n^c)$ for today.)

Better than variance based methods...

Sum of Poisson Random Variables. For $X = P(\lambda)$, $Pr[X = i] = e^{-\lambda \frac{\lambda^i}{i!}}$

Sum of Poisson Random Variables. For $X = P(\lambda)$, $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$

For $X = P(\lambda)$ and $Y = P(\mu)$, what is distribution X + Y?

What parameter?

Poission? Yes. What parameter? $\lambda + \mu$.

What parameter? $\lambda + \mu$.

Why?

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals and each has arrival with probability λ/n .

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals and each has arrival with probability λ/n .

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals and each has arrival with probability λ/n .

Now:

arrival for X happens with probability λ/n

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals and each has arrival with probability λ/n .

Now:

```
arrival for X happens with probability \lambda/n arrival for Y happens with probability \mu/n
```

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals and each has arrival with probability λ/n .

Now:

```
arrival for X happens with probability \lambda/n arrival for Y happens with probability \mu/n
```

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals and each has arrival with probability λ/n .

Now:

arrival for X happens with probability λ/n arrival for Y happens with probability μ/n

```
So, we get limit n \rightarrow \infty is B(n, (\lambda + \mu)/n).
```

Poission? Yes. What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals and each has arrival with probability λ/n .

Now:

arrival for X happens with probability λ/n arrival for Y happens with probability μ/n

So, we get limit $n \rightarrow \infty$ is $B(n, (\lambda + \mu)/n)$.

Details: both could arrive with probability $\lambda \mu / n^2$. But this goes to zero as $n \to \infty$. (Like λ^2 / n^2 in previous derivation)

Probability Space: Ω , $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$.

Probability Space: Ω , $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$.

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Events: $A \subset \Omega$, $Pr[A] = \sum_{\omega \in A} Pr[\omega]$.

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Events: $A \subset \Omega$, $Pr[A] = \sum_{\omega \in A} Pr[\omega]$. $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Events: $A \subset \Omega$, $Pr[A] = \sum_{\omega \in A} Pr[\omega]$. $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$ Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$.

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Events: $A \subset \Omega$, $Pr[A] = \sum_{\omega \in A} Pr[\omega]$. $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$ Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$. Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.

Probability Space: Ω , $Pr: \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Events: $A \subset \Omega$, $Pr[A] = \sum_{\omega \in A} Pr[\omega]$. $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$ Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$. Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$. Simple Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$.

Probability Space: Ω , $Pr: \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Events: $A \subset \Omega$, $Pr[A] = \sum_{\omega \in A} Pr[\omega]$. $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$ Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$. Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$. Simple Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$. Bayes Rule: $Pr[A|B] = \frac{Pr[B|A]Pr[B]}{Pr[B]}$

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Events: $A \subset \Omega$, $Pr[A] = \sum_{\omega \in A} Pr[\omega]$. $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$ Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$. Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$. Simple Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$. Bayes Rule: $Pr[A|B] = \frac{Pr[B|A]Pr[B]}{Pr[B]}$

Inference:

Have one of two coins. Flip coin, which coin do you have? Got positive test result. What is probability you have disease?

Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$.

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent *X*, *Y*, Var(X + Y) = Var(X) + Var(Y).

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent X, Y, Var(X + Y) = Var(X) + Var(Y). Also: $Var(cX) = c^2 Var(X)$ and Var(X + b) = Var(X).

Poisson: $X \sim P(\lambda)$ $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda \frac{\lambda'}{i!}}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda'}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent X, Y, Var(X + Y) = Var(X) + Var(Y). Also: $Var(cX) = c^2 Var(X)$ and Var(X + b) = Var(X).

Poisson: $X \sim P(\lambda)$ $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$. $E(X) = \lambda$, $Var(X) = \lambda$. Binomial: $X \sim B(n,p)$ $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$ $Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}$
 $E(X) = np$, $Var(X) = np(1-p)$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$ $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$
 $E(X) = np$, $Var(X) = np(1-p)$
Uniform: $X \sim U\{1,...,n\}$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda'}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$ $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$
 $E(X) = np$, $Var(X) = np(1-p)$
Uniform: $X \sim U\{1, ..., n\}$ $\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$.

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda'}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$ $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$
 $E(X) = np$, $Var(X) = np(1-p)$
Uniform: $X \sim U\{1, \dots, n\}$ $\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$.
 $E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$.

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda^{i}}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$ $Pr[X = i] = {n \choose i} p^{i} (1-p)^{n-i}$
 $E(X) = np$, $Var(X) = np(1-p)$
Uniform: $X \sim U\{1, \dots, n\}$ $\forall i \in [1, n]$, $Pr[X = i] = \frac{1}{n}$.
 $E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^{2}-1}{12}$.
Geometric: $X \sim G(p)$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$ $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$
 $E(X) = np$, $Var(X) = np(1-p)$
Uniform: $X \sim U\{1, \dots, n\}$ $\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$.
 $E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$.
Geometric: $X \sim G(p)$ $Pr[X = i] = (1-p)^{i-1}p$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda \frac{\lambda'}{i!}}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$ $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$
 $E(X) = np$, $Var(X) = np(1-p)$
Uniform: $X \sim U\{1, \dots, n\}$ $\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$.
 $E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$.
Geometric: $X \sim G(p)$ $Pr[X = i] = (1-p)^{i-1}p$
 $E(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega)=a} Pr(\omega)$

X and *Y* independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance:
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.
Binomial: $X \sim B(n,p)$ $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$
 $E(X) = np$, $Var(X) = np(1-p)$
Uniform: $X \sim U\{1, \dots, n\}$ $\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$
 $E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$.
Geometric: $X \sim G(p)$ $Pr[X = i] = (1-p)^{i-1}p$
 $E(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$

Note: Probability Mass Function \equiv Distribution.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent. Var(X) =

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent. $Var(X) = \frac{Var(X_i)}{n}$.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent. $Var(X) = \frac{Var(X_i)}{n}$.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent. $Var(X) = \frac{Var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent. $Var(X) = \frac{Var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. $\lim_{n \to \infty} A_n = E[X_1]$.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent. $Var(X) = \frac{Var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. lim_{$n \to A_n = E[X_1]$. Cuz:}

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent. $Var(X) = \frac{Var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. $\lim_{n \to \infty} A_n = E[X_1]$. Cuz: $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For $X = \frac{X_1 + \dots + X_n}{n}$, where X_i are indentical and independent. $Var(X) = \frac{Var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. $\lim_{n \to \infty} A_n = E[X_1]$. Cuz: $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$. For X_i with $Var(X_i) = \sigma^2$.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For
$$X = \frac{X_1 + \dots + X_n}{n}$$
, where X_i are indentical and independent.
 $Var(X) = \frac{var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. $\lim_{n \to \infty} A_n = E[X_1]$. Cuz: $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$.

For X_i with $Var(X_i) = \sigma^2$. What is the confidence interval for A_n for confidence .95?

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For
$$X = \frac{X_1 + \dots + X_n}{n}$$
, where X_i are indentical and independent.
 $Var(X) = \frac{var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. $\lim_{n \to \infty} A_n = E[X_1]$. Cuz: $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$.

For X_i with $Var(X_i) = \sigma^2$. What is the confidence interval for A_n for confidence .95? For what ε is $Pr[|A_n - E[A_n]| \ge \varepsilon] \le .05 = \delta$?

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For
$$X = \frac{X_1 + \dots + X_n}{n}$$
, where X_i are indentical and independent.
 $Var(X) = \frac{var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. $\lim_{n \to \infty} A_n = E[X_1]$. Cuz: $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$.

For X_i with $Var(X_i) = \sigma^2$. What is the confidence interval for A_n for confidence .95? For what ε is $Pr[|A_n - E[A_n]| \ge \varepsilon] \le .05 = \delta$? $\varepsilon = \frac{\sigma}{\sqrt{n\delta}}$ using Chebyshev.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For
$$X = \frac{X_1 + \dots + X_n}{n}$$
, where X_i are indentical and independent $Var(X) = \frac{var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. $\lim_{n \to \infty} A_n = E[X_1]$. Cuz: $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$.

For X_i with $Var(X_i) = \sigma^2$. What is the confidence interval for A_n for confidence .95? For what ε is $Pr[|A_n - E[A_n]| \ge \varepsilon] \le .05 = \delta$? $\varepsilon = \frac{\sigma}{\sqrt{n}\delta}$ using Chebyshev. $\varepsilon \approx \frac{\sigma}{\sqrt{n}} \log \frac{1}{\delta}$ using "Chernoff."

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For
$$X = \frac{X_1 + \dots + X_n}{n}$$
, where X_i are indentical and independent $Var(X) = \frac{var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$. $\lim_{n \to A_n} A_n = E[X_1]$. Cuz: $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$.

For X_i with $Var(X_i) = \sigma^2$. What is the confidence interval for A_n for confidence .95? For what ε is $Pr[|A_n - E[A_n]| \ge \varepsilon] \le .05 = \delta$? $\varepsilon = \frac{\sigma}{\sqrt{n}\delta}$ using Chebyshev. $\varepsilon \approx \frac{\sigma}{\sqrt{n}} \log \frac{1}{\delta}$ using "Chernoff." "*z*-score" from AP statistics.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For
$$X = \frac{X_1 + \dots + X_n}{n}$$
, where X_i are indentical and independent.
 $Var(X) = \frac{var(X_i)}{n}$.

Law of Large Numbers:
$$A_n = \frac{X_1 + \dots + X_n}{n}$$
.
 $\lim_{n \to A_n} A_n = E[X_1]$.
Cuz:
 $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$.

For X_i with $Var(X_i) = \sigma^2$.

What is the confidence interval for A_n for confidence .95?

For what ε is $Pr[|A_n - E[A_n]| \ge \varepsilon] \le .05 = \delta$? $\varepsilon = \frac{\sigma}{\sqrt{n\delta}}$ using Chebyshev. $\varepsilon \approx \frac{\sigma}{\sqrt{n}} \log \frac{1}{\delta}$ using "Chernoff." "*z*-score" from AP statistics.

FYI: Chebyshev uses $E[X^2]$, Chernoff uses $E[e^X]$. Both use Markov.

Concentration: Law Of Large Numbers.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For
$$X = \frac{X_1 + \dots + X_n}{n}$$
, where X_i are indentical and independent.
 $Var(X) = \frac{var(X_i)}{n}$.

Law of Large Numbers:
$$A_n = \frac{X_1 + \dots + X_n}{n}$$
.
 $\lim_{n \to A_n} A_n = E[X_1]$.
Cuz:
 $Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}$.

For X_i with $Var(X_i) = \sigma^2$.

What is the confidence interval for A_n for confidence .95?

For what ε is $Pr[|A_n - E[A_n]| \ge \varepsilon] \le .05 = \delta$? $\varepsilon = \frac{\sigma}{\sqrt{n\delta}}$ using Chebyshev. $\varepsilon \approx \frac{\sigma}{\sqrt{n}} \log \frac{1}{\delta}$ using "Chernoff." "*z*-score" from AP statistics.

FYI: Chebyshev uses $E[X^2]$, Chernoff uses $E[e^X]$. Both use Markov.

Distribution for X, Y: Pr[X = a, Y = b].

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Distribution for X, Y:
$$Pr[X = a, Y = b]$$
.
Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error:

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error: E[X] for X.

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error: E[X] for X. Error is var(X).

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error: E[X] for X. Error is var(X). E[Y|X] for Y if you know X.

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error:

E[X] for X. Error is var(X). E[Y|X] for Y if you know X. Best linear function.

Distribution for X, Y:
$$Pr[X = a, Y = b]$$
.
Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error:

$$\begin{split} E[X] & \text{ for } X. \text{ Error is } var(X). \\ E[Y|X] & \text{ for } Y \text{ if you know } X. \\ \text{Best linear function.} \\ L[Y|X] &= E[Y] + corr(X,Y) \sqrt{var(Y)} \frac{X - E(X)}{\sqrt{var(X)}}. \end{split}$$

Distribution for X, Y:
$$Pr[X = a, Y = b]$$
.
Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error:

E[X] for X. Error is var(X). E[Y|X] for Y if you know X.

Best linear function.

$$L[Y|X] = E[Y] + corr(X, Y) \sqrt{var(Y)} \frac{X - E(X)}{\sqrt{var(X)}}.$$

Reduces mean squared error Y by $(corr(X, Y))^2$ by var(Y).

Distribution for X, Y:
$$Pr[X = a, Y = b]$$
.
Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error:

E[X] for X. Error is var(X). E[Y|X] for Y if you know X.

Best linear function.

$$L[Y|X] = E[Y] + corr(X, Y) \sqrt{var(Y)} \frac{X - E(X)}{\sqrt{var(X)}}$$

Reduces mean squared error Y by $(corr(X, Y))^2$ by var(Y).

Warning: assume knowing joint distribution.

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error:

E[X] for X. Error is var(X). E[Y|X] for Y if you know X.

Best linear function.

$$L[Y|X] = E[Y] + corr(X, Y) \sqrt{var(Y)} \frac{X - E(X)}{\sqrt{var(X)}}.$$

Reduces mean squared error Y by $(corr(X, Y))^2$ by var(Y).

Warning: assume knowing joint distribution. Statistics: sampling....Law of Large Numbers.

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error:

E[X] for X. Error is var(X). E[Y|X] for Y if you know X.

Best linear function.

$$L[Y|X] = E[Y] + corr(X, Y) \sqrt{var(Y)} \frac{X - E(X)}{\sqrt{var(X)}}.$$

Reduces mean squared error Y by $(corr(X, Y))^2$ by var(Y).

Warning: assume knowing joint distribution. Statistics: sampling....Law of Large Numbers. Computer Science: large data, other functions "Deep Networks."

Distribution for X, Y: Pr[X = a, Y = b]. Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$\begin{aligned} \Pr[X = a | Y = b] &= \frac{\Pr[X = a, Y = b]}{\Pr[Y = b]} \\ E[Y|X] &= \sum_{b} b \times \Pr[Y = b | X]. \end{aligned}$$

Estimation minimizing Mean Squared Error:

E[X] for X. Error is var(X). E[Y|X] for Y if you know X.

Best linear function.

$$L[Y|X] = E[Y] + corr(X, Y) \sqrt{var(Y)} \frac{X - E(X)}{\sqrt{var(X)}}.$$

Reduces mean squared error Y by $(corr(X, Y))^2$ by var(Y).

Warning: assume knowing joint distribution. Statistics: sampling....Law of Large Numbers. Computer Science: large data, other functions "Deep Networks."