
Outline

Linear Regression: wrapup.

How do I love e?

Balls in Bins.

Birthday.
Coupon Collector.
Load balancing.

Poisson Distribution: Sum of two Poissons is Poisson.



Estimation Error
We saw that the LLSE of Y given X is

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

How good is this estimator?
Or what is the mean squared estimation error?

We find

E [|Y −L[Y |X ]|2] = E [(Y −E [Y ]− (cov(X ,Y )/var(X ))(X −E [X ]))2]

= E [(Y −E [Y ])2]−2
cov(X ,Y )

var(X )
E [(Y −E [Y ])(X −E [X ])]

+(
cov(X ,Y )

var(X )
)2E [(X −E [X ])2]

= var(Y )− cov(X ,Y )2

var(X )
.

Without observations, the estimate is E [Y ]. The error is var(Y ). Observing X
reduces the error.

Dividing by var(Y ), one gets reduction: (cov(X ,Y ))2

var(Y )var(Y )
= (corr(X ,Y ))2 = r2.



LR: Another Figure

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).

Note that
▶ the LR line goes through (E [X ],E [Y ])

▶ its slope is cov(X ,Y )
var(X ) .



Quadratic Regression
Let X ,Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable

Q[Y |X ] = a+bX +cX 2

where a,b,c are chosen to minimize E [(Y −a−bX −cX 2)2].

Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E [Y −a−bX −cX 2] = E [Y ]−a−bE [X ]−cE [X 2]

0 = E [(Y −a−bX −cX 2)X ] = E [XY ]−a−bE [X 2]−cE [X 3]

0 = E [(Y −a−bX −cX 2)X 2] = E [X 2Y ]−aE [X 2]−bE [X 3]−cE [X 4]

We solve these three equations in the three unknowns (a,b,c).

For linear regression, L[Y |X ], approach gives:

L[Y |X ] = Ŷ = E [Y ]+
cov(X ,Y )

var(X )
(X −E [X ]).



How do I love e?

Let me count the ways.

What is e?
For a function f (x) = ex , f ′(x) = ex .

Another view: dy
dx = y .

More money you have the faster you gain money.
More rabbits there are, the more rabbits you get.
More people with a disease the faster it grows:

Epidemiologists:reproduction rate, R.
Discrete version: xn+1 −xn =∆(xn) = xn.

xn = 2n, for x0 = 1.



How do I love e?
For a function f (x) = ex , f ′(x) = ex .

What is this f ′(x)?
Slope of the tangent line.

f ′(x)≈ f (x +1/n)− f (x)
x +1/n−x

=
f (x +1/n)− f (x)

1/n

for large n.

And f (x) = ex , f (x +1/n) = ex+1/n = exe1/n, so

f ′(x)≈ ex (e1/n −1)
1/n

= ex e1/n −1
1/n

≈ ex

=⇒ e1/n −1
1/n

≈ 1 =⇒ e1/n = 1/n =⇒ e ≈ (1+1/n)n.

Continuous compounded interest: rate r .
break time into intervals of size 1/n.
(1+ r/n)n → ((1+ r/n)n/r )r → er .



Balls in bins

One throws m balls into n > m bins.



Balls in bins

One throws m balls into n > m bins.

Theorem:
Pr [no collision]≈ exp{−m2

2n }, for large enough n.
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Balls in bins

Theorem:
Pr [no collision]≈ exp{−m2

2n }, for large enough n.

In particular, Pr [no collision]≈ 1/2 for m2/(2n)≈ ln(2), i.e.,

m ≈
√

2 ln(2)n ≈ 1.2
√

n.

E.g., 1.2
√

20 ≈ 5.4.

Roughly, Pr [collision]≈ 1/2 for m =
√

n. (e−0.5 ≈ 0.6.)



The Calculation.
Ai = no collision when i th ball is placed in a bin.

Pr [Ai |Ai−1 ∩·· ·∩A1] = (1− i−1
n ).

no collision = A1 ∩·· ·∩Am.

Product rule:
Pr [A1 ∩·· ·∩Am] = Pr [A1]Pr [A2|A1] · · ·Pr [Am|A1 ∩·· ·∩Am−1]

⇒ Pr [no collision] =
(

1− 1
n

)
· · ·

(
1− m−1

n

)
.

Hence,

ln(Pr [no collision]) =
m−1

∑
k=1

ln(1− k
n
)≈

m−1

∑
k=1

(−k
n
) (∗)

= −1
n

m(m−1)
2

(†)

≈−m2

2n

(∗) We used ln(1− ε)≈−ε for |ε| ≪ 1.
(†) 1+2+ · · ·+m−1 = (m−1)m/2.



Approximation

exp{−x}= 1−x +
1
2!

x2 + · · · ≈ 1−x , for |x | ≪ 1.

Hence, −x ≈ ln(1−x) for |x | ≪ 1.



Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365 ≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)



Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:
X = Number of collisions between pairs of balls.

or number of pairs i and j where ball i and ball j are in same bin.

Xij = 1{balls i , j in same bin}
X = ∑ij Xij

E [Xij ] = Pr [balls i , j in same bin] = 1
n .

Ball i in some bin, ball j chooses that bin with probability 1/n.

E [X ] = m(m−1)
2n ≈ m2

2n .

For m =
√

n, E [X ] = 1/2

Markov: Pr [X ≥ c]≤ EX
c .

Pr [X ≥ 1]≤ E [X ]
1 = 1/2.



Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Pr [share a checksum]≤ 10−3?

Claim: b ≥ 2.9 ln(m)+9.

Proof:

Let n = 2b be the number of checksums.
We know Pr [no collision]≈ exp{−m2/(2n)} ≈ 1−m2/(2n). Hence,

Pr [no collision]≈ 1−10−3 ⇔ m2/(2n)≈ 10−3

⇔ 2n ≈ m2103 ⇔ 2b+1 ≈ m2210

⇔ b+1 ≈ 10+2 log2(m)≈ 10+2.9 ln(m).

Note: log2(x) = log2(e) ln(x)≈ 1.44 ln(x).



Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) Pr [miss one specific item]≈ e−m
n

(b) Pr [miss any one of the items]≤ ne−m
n .



Coupon Collector Problem: Analysis.

Event Am = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1− 1
n )

Fail the second time: (1− 1
n )

And so on ... for m times. Hence,

Pr [Am] = (1− 1
n
)×·· ·× (1− 1

n
)

= (1− 1
n
)m

ln(Pr [Am]) = m ln(1− 1
n
)≈ m× (−1

n
)

Pr [Am] ≈ exp{−m
n
}.

For pm = 1
2 , we need around n ln2 ≈ 0.69n boxes.



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1 ∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1 ∪E2 · · ·∪En]≤ Pr [E1]+Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−m

n .



Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p
).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−m
n ≤ ne−ln(n/p) ≤ n(p

n )≤ p.)

E.g., n = 102 ⇒ m = 530;n = 103 ⇒ m = 7600.



Time to collect coupons

X -time to get n coupons.

X1 - time to get first coupon. Note: X1 = 1. E(X1) = 1.

X2 - time to get second coupon after getting first.

Pr [“get second coupon”|“got milk—- first coupon”] = n−1
n

E [X2]? Geometric ! ! ! =⇒ E [X2] =
1
p = 1

n−1
n

= n
n−1 .

Pr [“getting i th coupon|“got i −1rst coupons”] = n−(i−1)
n = n−i+1

n

E [Xi ] =
1
p = n

n−i+1 , i = 1,2, . . . ,n.

E [X ] = E [X1]+ · · ·+E [Xn] =
n
n
+

n
n−1

+
n

n−2
+ · · ·+ n

1

= n(1+
1
2
+ · · ·+ 1

n
) =: nH(n)≈ n(lnn+ γ)



Review: Harmonic sum

H(n) = 1+
1
2
+ · · ·+ 1

n
≈

∫ n

1

1
x

dx = ln(n).

.

A good approximation is

H(n)≈ ln(n)+ γ where γ ≈ 0.58 (Euler-Mascheroni constant).



Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.



Balls in bins.

For each of n balls, choose random bin: Xi balls in bin i .

Pr [Xi ≥ k ]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi ]≤ ∑i Pr [Ai ]

Pr [balls in S chooses bin i] =
( 1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k ] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k ]≤ 1
n2 .

Pr [any Xi ≥ k ]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n



Solving for k

Pr [Xi ≥ k ]≤ 1
k ! ≤ 1/n2?

What is upper bound on max-load k?

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

k !≥ n2 for k = 2e logn
(Recall k !≥ ( k

e )
k .)

=⇒ 1
k ! ≤

( e
k

)k ≤
(

1
2 logn

)k

If logn ≥ 1, then k = 2e logn suffices.

Also: k =Θ(logn/ log logn) suffices as well.

kk → nc .

Actually Max load is Θ(logn/ log logn) w.h.p.

(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Better than variance based methods...



Sum of Poisson Random Variables.
For X = P(λ ), Pr [X = i] = e−λ λ i

i!

For X = P(λ ) and Y = P(µ), what is distribution X +Y ?

Pr [X +Y = k ] = e−λ−µ
∑i+j=k

λ i µ j

i!j! .

Poission? Yes.
What parameter? λ +µ.

Why?
P(λ ) is limit n → ∞ of B(n,λ/n).

Recall Derivation:
break interval into n intervals
and each has arrival with probability λ/n.

Now:
arrival for X happens with probability λ/n
arrival for Y happens with probability µ/n

So, we get limit n → ∞ is B(n,(λ +µ)/n).

Details: both could arrive with probability λ µ/n2.
But this goes to zero as n → ∞.

(Like λ 2/n2 in previous derivation)



Discrete Probability.

Probability Space: Ω, Pr : Ω→ [0,1], ∑ω∈Ω Pr(w) = 1.

Events: A ⊂ Ω, Pr [A] = ∑ω∈A Pr [ω].

Pr [A∪B] = Pr [A]+Pr [B]−Pr [A∩B]

Simple Total Probability: Pr [B] = Pr [A∩B]+Pr [A∩B].

Conditional Probability: Pr [A|B] = Pr [A∩B]
Pr [B] .

Simple Product Rule: Pr [A∩B] = Pr [A|B]Pr [B].

Bayes Rule: Pr [A|B] = Pr [B|A]Pr [B]
Pr [B]

Inference:
Have one of two coins. Flip coin, which coin do you have?
Got positive test result. What is probability you have disease?



Random Variables
Random Variables: X : Ω→ R.

Distribution: Pr [X = a] = ∑ω:X (ω)=a Pr(ω)

X and Y independent ⇐⇒ all associated events are independent.
Expectation: E [X ] = ∑a aPr [X = a] = ∑ω∈Ω X (ω)Pr(ω).

Linearity: E [X +Y ] = E [X ]+E [Y ].

Variance: Var(X ) = E [(X −E [X ])2] = E [X 2]− (E(X ))2

For independent X ,Y , Var(X +Y ) = Var(X )+Var(Y ).
Also: Var(cX ) = c2Var(X ) and Var(X +b) = Var(X ).

Poisson: X ∼ P(λ ) Pr [X = i] = e−λ λ i

i! .
E(X ) = λ , Var(X ) = λ .

Binomial: X ∼ B(n,p) Pr [X = i] =
(n

i

)
pi(1−p)n−i

E(X ) = np, Var(X ) = np(1−p)
Uniform: X ∼ U{1, . . . ,n} ∀i ∈ [1,n],Pr [X = i] = 1

n .
E [X ] = n+1

2 , Var(X ) = n2−1
12 .

Geometric: X ∼ G(p) Pr [X = i] = (1−p)i−1p
E(X ) = 1

p , Var(X ) = 1−p
p2

Note: Probability Mass Function ≡ Distribution.



Concentration: Law Of Large Numbers.
Markov: For a non-negative r.v. X , Pr [X ≥ c]≤ E [X ]

c .

Chebyshev: For a random variable X : Pr [|X −E(X )|> ε]≤ Var(X )

epsilon2

For X = X1+···+Xn
n , where Xi are indentical and independent.

Var(X ) = var(Xi )
n .

Law of Large Numbers: An = X1+···+Xn
n .

limn→An = E [X1].
Cuz:

Pr [|An −E [An]| ≥ ε]≤ varAn
ε2 = var(X1)

nε2 .

For Xi with Var(Xi) = σ2.
What is the confidence interval for An for confidence .95?

For what ε is Pr [|An −E [An]| ≥ ε]≤ .05 = δ?
ε = σ√

nδ
using Chebyshev.

ε ≈ σ√
n log

1
δ

using “Chernoff.”
“z-score” from AP statistics.

FYI: Chebyshev uses E [X 2], Chernoff uses E [eX ]. Both use Markov.



Joint Distributions and Estimation.

Distribution for X ,Y : Pr [X = a,Y = b].
Marginals: Pr [X = a] = ∑b Pr [X = a,Y = b].

Conditioning:
Pr [X = a|Y = b] = Pr [X=a,Y=b]

Pr [Y=b]
E [Y |X ] = ∑b b×Pr [Y = b|X ].

Estimation minimizing Mean Squared Error:
E [X ] for X . Error is var(X ).
E [Y |X ] for Y if you know X .
Best linear function.
L[Y |X ] = E [Y ]+corr(X ,Y )

√
var(Y ) X−E(X )√

var(X )
.

Reduces mean squared error Y by (corr(X ,Y ))2 by var(Y ).

Warning: assume knowing joint distribution.
Statistics: sampling....Law of Large Numbers.
Computer Science: large data, other functions “Deep Networks.”


