Today

Estimation.

MMSE: Best Function that predicts *X* from *Y*.

Conditional Expectation.

Finish Linear Regression:

Best linear function prediction of *Y* given *X*.

Applications to random processes.

Estimation: Expectation and Mean Squared Error.

"Best" guess about *Y*, is *E*[*Y*]. If "best" is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y-a)^2]$ is a=E[Y].

Proof:

Let
$$\hat{Y} := Y - E[Y]$$
.
Then, $E[\hat{Y}] = E[Y - E[Y]] = E[Y] - E[Y] = 0$.
So, $E[\hat{Y}c] = 0, \forall c$. Now,

$$E[(Y-a)^{2}] = E[(Y-E[Y]+E[Y]-a)^{2}]$$

$$= E[(\hat{Y}+c)^{2}] \text{ with } c = E[Y]-a$$

$$= E[\hat{Y}^{2}+2\hat{Y}c+c^{2}] = E[\hat{Y}^{2}]+2E[\hat{Y}c]+c^{2}$$

$$= E[\hat{Y}^{2}]+0+c^{2} \ge E[\hat{Y}^{2}].$$

Hence, $E[(Y - a)^2] \ge E[(Y - E[Y])^2], \forall a$.

Estimation: Preamble

Thus, if we want to guess the value of Y, we choose E[Y]. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y?

Review

Definitions Let X and Y be RVs on Ω .

- ▶ Joint Distribution: Pr[X = x, Y = y]
- ▶ Marginal Distribution: $Pr[X = x] = \sum_{y} Pr[X = x, Y = y]$
- ► Conditional Distribution: $Pr[Y = y | X = x] = \frac{Pr[X = x, Y = y]}{Pr[X = x]}$

Conditional Expectation

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{Y} yPr[Y = y|X = x].$$

Fact

$$E[Y|X=x] = \sum_{\omega} Y(\omega) Pr[\omega|X=x].$$

Proof:
$$E[Y|X=x] = E[Y|A]$$
 with $A = \{\omega : X(\omega) = x\}$.

$$E[Y|X=x] = \sum_{y} y Pr[Y=y|X=x]$$

Theorem

- (a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
- (b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
- (c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot);$
- (d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot);$
- (e) E[E[Y|X]] = E[Y].

Proof:

(a),(b) Obvious

(c)
$$E[Yh(X)|X = x] = \sum_{\omega} Y(\omega)h(X(\omega))Pr[\omega|X = x]$$

= $\sum_{\omega} Y(\omega)h(x)Pr[\omega|X = x] = h(x)E[Y|X = x]$

$$E[Y|X=x] = \sum_{y} y Pr[Y=y|X=x]$$

Theorem

- (a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
- (b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
- (c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot);$
- (d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot);$
- (e) E[E[Y|X]] = E[Y].

Proof: (continued)

(d)
$$E[h(X)E[Y|X]] = \sum_{x} h(x)E[Y|X = x]Pr[X = x]$$

 $= \sum_{x} h(x) \sum_{y} yPr[Y = y|X = x]Pr[X = x]$
 $= \sum_{x} h(x) \sum_{y} yPr[X = x, y = y]$
 $= \sum_{x,y} h(x)yPr[X = x, y = y] = E[h(X)Y].$

$$E[Y|X=x] = \sum_{y} yPr[Y=y|X=x]$$

Theorem

- (a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
- (b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
- (c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot);$
- (d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot);$
- (e) E[E[Y|X]] = E[Y].

Proof: (continued)

(e) Let
$$h(X) = 1$$
 in (d).

Theorem

- (a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
- (b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
- (c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot);$
- (d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot);$
- (e) E[E[Y|X]] = E[Y].

Note that (d) says that

$$E[(Y-E[Y|X])h(X)|X]=0.$$

Note: one view is that the estimation error Y - E[Y|X] is orthogonal to every function h(X) of X.

This the projection property. Won't discuss projection property in this offering.

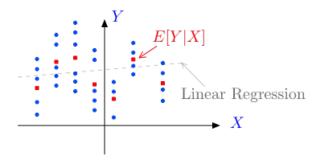
CE = MMSE (Minimum Mean Squared Estimator)

Theorem

E[Y|X] is the 'best' guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes $E[(Y-g(X))^2]$.



CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:** Recall: Expectation of r.v. minimizes mean squared error.

Sample space X = x: so E[Y|X = x] minimizes mean squared error.

Proof:

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

$$= E[(Y - g(X))^{2}] + E[(g(X) - h(X))^{2}]$$

$$+2E[(Y - g(X))(g(X) - h(X))].$$

But,

$$E[(Y-g(X))(g(X)-h(X))]=0$$
 by the projection property.

Thus,
$$E[(Y - h(X))^2] \ge E[(Y - g(X))^2]$$
.

Application: Going Viral

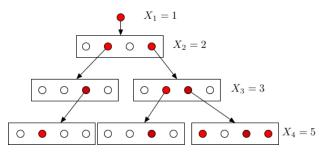
Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is not funny.)

You have *d* friends. Each of your friend retweets w.p. *p*.

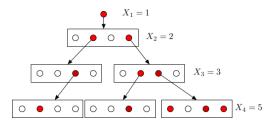
Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out (mercifully)?



In this example, d = 4.

Application: Going Viral



Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

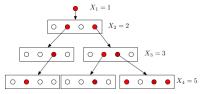
If pd < 1, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.

If $pd \ge 1$, then for all C one can find n s.t.

$$E[X] \geq E[X_1 + \cdots + X_n] \geq C.$$

In fact, one can show that $pd \ge 1 \implies Pr[X = \infty] > 0$.

Application: Going Viral



An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

To see this, note that given $X_n = k$, and given the numbers of friends $D_1 = d_1, \dots, D_k = d_k$ of these X_n people, one has $X_{n+1} = B(d_1 + \dots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n = k, D_1 = d_1, \dots, D_k = d_k] = p(d_1 + \dots + d_k).$$

Thus, $E[X_{n+1}|X_n=k,D_1,\ldots,D_k]=p(D_1+\cdots+D_k)$.

Consequently, $E[X_{n+1}|X_n=k]=E[p(D_1+\cdots+D_k)]=pdk$.

Finally, $E[X_{n+1}|X_n] = pdX_n$, and $E[X_{n+1}] = pdE[X_n]$.

We conclude as before.

Application: Wald's Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

Z takes values in $\{0,1,2,\ldots\}$

and $E[X_n] = \mu$ for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

Proof:

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Thus,
$$E[X_1 + \cdots + X_Z | Z] = \mu Z$$
.

Hence,
$$E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z]$$
.

Summary

Conditional Expectation

- ▶ Definition: $E[Y|X] := \sum_{Y} yPr[Y = y|X = x]$
- ▶ Properties: E[Y E[Y|X]h(X)|X] = 0; E[E[Y|X]] = E[Y]
- Applications:
 - Viral Propagation.
 - Wald
- ▶ MMSE: E[Y|X] minimizes $E[(Y-g(X))^2]$ over all $g(\cdot)$

Linear Estimation: Preamble

Thus, if we want to guess the value of Y, we choose E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?

The idea is to use a function g(X) of the observation to estimate Y.

The "right" function is E[X|Y].

A simpler function?

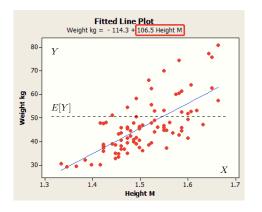
"Simplest" function is linear: g(X) = a + bX.

What is the best linear function? That is our next topic.

Linear Regression: Motivation

Example 1: 100 people.

Let (X_n, Y_n) = (height, weight) of person n, for n = 1, ..., 100:

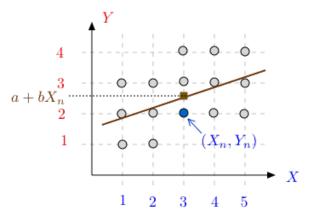


The blue line is Y = -114.3 + 106.5X. (X in meters, Y in kg.) Best linear fit: Linear Regression.

Motivation

Example 2: 15 people.

We look at two attributes: (X_n, Y_n) of person n, for n = 1, ..., 15:



The line Y = a + bX is the linear regression.

LLSE

LLSE[Y|X] - best guess for Y given X.

Theorem

Consider two RVs X, Y with a given distribution Pr[X = x, Y = y]. Then,

Proof 1:
$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$
$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var[X]}(X - E[X]). \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}$$

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d. Since: $\hat{Y} = \alpha + \beta X$ for some α, β , so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$. Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b$. Now,

$$E[(Y-a-bX)^2] = E[(Y-\hat{Y}+\hat{Y}-a-bX)^2]$$

= $E[(Y-\hat{Y})^2] + E[(\hat{Y}-a-bX)^2] + 0 \ge E[(Y-\hat{Y})^2].$

This shows that $E[(Y - \hat{Y})^2] \le E[(Y - a - bX)^2]$, for all (a, b). Thus \hat{Y} is the LLSE.

A Bit of Algebra

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Hence, $E[Y - \hat{Y}] = 0$. We want to show that $E[(Y - \hat{Y})X] = 0$.

Note that

$$E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])],$$

because $E[(Y - \hat{Y})E[X]] = 0$.

Now,

$$E[(Y - \hat{Y})(X - E[X])]$$

$$= E[(Y - E[Y])(X - E[X])] - \frac{cov(X, Y)}{var[X]} E[(X - E[X])(X - E[X])]$$

$$= (*) cov(X, Y) - \frac{cov(X, Y)}{var[X]} var[X] = 0. \quad \Box$$

(*) Recall that cov(X, Y) = E[(X - E[X])(Y - E[Y])] and $var[X] = E[(X - E[X])^2].$

LLSE

Theorem

Consider two RVs X, Y with a given distribution Pr[X = x, Y = y]. Then,

Proof 1:

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var[X]}(X - E[X]). \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}$$

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (See next slide.)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d. Since: $\hat{Y} = \alpha + \beta X$ for some α, β , so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$. Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b$. Now,

$$E[(Y-a-bX)^2] = E[(Y-\hat{Y}+\hat{Y}-a-bX)^2]$$

= $E[(Y-\hat{Y})^2] + E[(\hat{Y}-a-bX)^2] + 0 \ge E[(Y-\hat{Y})^2].$

This shows that $E[(Y - \hat{Y})^2] \le E[(Y - a - bX)^2]$, for all (a, b). Thus \hat{Y} is the LLSE.

A Bit of Algebra

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Hence, $E[Y - \hat{Y}] = 0$. We want to show that $E[(Y - \hat{Y})X] = 0$.

Note that

$$E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])],$$

because $E[(Y - \hat{Y})E[X]] = 0$.

Now,

$$E[(Y - \hat{Y})(X - E[X])]$$

$$= E[(Y - E[Y])(X - E[X])] - \frac{cov(X, Y)}{var[X]} E[(X - E[X])(X - E[X])]$$

$$= (*) cov(X, Y) - \frac{cov(X, Y)}{var[X]} var[X] = 0. \quad \Box$$

(*) Recall that cov(X, Y) = E[(X - E[X])(Y - E[Y])] and $var[X] = E[(X - E[X])^2].$

Estimation Error

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?
Or what is the mean squared estimation error?

We find

$$E[|Y - L[Y|X]|^{2}] = E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^{2}]$$

$$= E[(Y - E[Y])^{2}] - 2\frac{cov(X, Y)}{var(X)}E[(Y - E[Y])(X - E[X])]$$

$$+ (\frac{cov(X, Y)}{var(X)})^{2}E[(X - E[X])^{2}]$$

$$= var(Y) - \frac{cov(X, Y)^{2}}{var(X)}.$$

Without observations, the estimate is E[Y]. The error is var(Y). Observing X reduces the error.

Estimation Error: A Picture

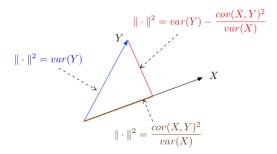
We saw that

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X])$$

and

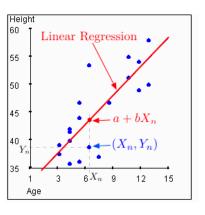
$$E[|Y - L[Y|X]|^2] = var(Y) - \frac{cov(X, Y)^2}{var(X)}.$$

Here is a picture when E[X] = 0, E[Y] = 0: Dimensions correspond to sample points, uniform sample space.

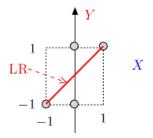


Vector Y at dimension ω is $\frac{1}{\sqrt{\Omega}}Y(\omega)$

Example 1:



Example 2:

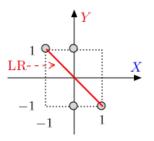


We find:

$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = 1/2;$
 $LR: \hat{Y} = E[Y] + \frac{cov(X, Y)}{var[X]}(X - E[X]) = X.$

Example 3:

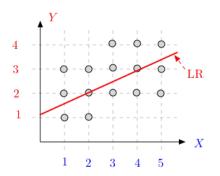


We find:

$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = -1/2;$
 $LR: \hat{Y} = E[Y] + \frac{cov(X, Y)}{var[X]}(X - E[X]) = -X.$

Example 4:

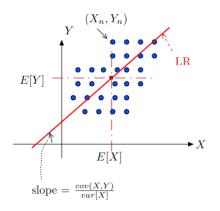


We find:

$$E[X] = 3; E[Y] = 2.5; E[X^2] = (3/15)(1 + 2^2 + 3^2 + 4^2 + 5^2) = 11;$$

 $E[XY] = (1/15)(1 \times 1 + 1 \times 2 + \dots + 5 \times 4) = 8.4;$
 $var[X] = 11 - 9 = 2; cov(X, Y) = 8.4 - 3 \times 2.5 = 0.9;$
LR: $\hat{Y} = 2.5 + \frac{0.9}{2}(X - 3) = 1.15 + 0.45X.$

LR: Another Figure



Note that

- ▶ the LR line goes through (E[X], E[Y])
- ightharpoonup its slope is $\frac{cov(X,Y)}{var(X)}$.

Quadratic Regression

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^{2})X] = E[XY] - a - bE[X^{2}] - cE[X^{3}]$$

$$0 = E[(Y - a - bX - cX^{2})X^{2}] = E[X^{2}Y] - aE[X^{2}] - bE[X^{3}] - cE[X^{4}]$$

We solve these three equations in the three unknowns (a, b, c).

Summary

Linear Regression

Mean Squared: E[Y] is best mean squared estimator for Y. MMSE: E[Y|X] is best mean squared estimator for Y given X.

Linear Regression: $L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X])$

Can do other forms of functions as well, e.g., quadratic.

Warning: assumes you know distribution. Sample Points "are" distribution in this class.

Statistics: Fix the assumption above.