#### Review.



Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol  $\implies$  " $\ge$  18"

"< 18"  $\Longrightarrow$  Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms:  $\land, \lor, \neg, P \Longrightarrow Q \equiv \neg P \lor Q$ .

Truth Table. Putting together identities. (E.g., cases, substitution.)

Predicates, P(x), and quantifiers.  $\forall x, P(x)$ .

DeMorgan's:  $\neg (P \lor Q) \equiv \neg P \land \neg Q$ .  $\neg \forall x, P(x) \equiv \exists x, \neg P(x)$ .

### Divides.

a|b means

- (A) There exists  $k \in \mathbb{Z}$ , with a = kb.
- (B) There exists  $k \in \mathbb{Z}$ , with b = ka.
- (C) There exists  $k \in \mathbb{N}$ , with b = ka.
- (D) There exists  $k \in \mathbb{Z}$ , with k = ab.
- (E) a divides b

#### CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove  $P \Longrightarrow Q$ .)
- 3. by Contraposition (Prove  $P \Longrightarrow Q$ )
- 4. by Contradiction (Prove P.)
- 5. by Cases

If time: discuss induction.

#### Direct Proof.

**Theorem:** For any  $a, b, c \in Z$ , if  $a \mid b$  and  $a \mid c$  then  $a \mid (b - c)$ .

**Proof:** Assume a|b and a|c

b = aq and c = aq' where  $q, q' \in Z$ 

b-c=aq-aq'=a(q-q') Done?

(b-c)=a(q-q') and (q-q') is an integer so by definition of divides

a|(b-c)

Works for  $\forall a, b, c$ ?

Argument applies to every  $a, b, c \in Z$ .

Used distributive property and definition of divides.

Direct Proof Form:

Goal:  $P \Longrightarrow Q$ 

Assume P.

Therefore Q.

# Quick Background and Notation.

Integers closed under addition.

 $a,b\in Z \implies a+b\in Z$ 

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

Formally:  $a|b \iff \exists g \in Z \text{ where } b = ag.$ 

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

### Another direct proof.

Let  $D_3$  be the 3 digit natural numbers.

Theorem: For  $n \in D_3$ , if the alternating sum of digits of n is divisible by 11, then 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$ 

Examples:

 $\Box$ 

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

**Proof:** For  $n \in D_3$ , n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n, k+9a+b is integer.  $\implies 11|n$ .

Direct proof of  $P \Longrightarrow Q$ :

Assumed P: 11|a-b+c. Proved Q: 11|n.

#### The Converse

```
Thm: \forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n| Is converse a theorem? \forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n) Yes? No?
```

# Another Contraposition...

#### Another Direct Proof.

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)
Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z

That is 11|\text{alternating sum of digits.}

Note: similar proof to other. In this case every \Longrightarrow is \Longleftrightarrow
Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: \forall n \in N', (11|\text{alt. sum of digits of } n) \iff (11|n)
```

# Proof by contradiction:form

```
Theorem: \sqrt{2} is irrational.

Must show: For every a,b\in Z, (\frac{a}{b})^2\neq 2.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

\neg P \implies P_1 \cdots \implies R
```

$$\begin{array}{l} \neg P \implies P_1 \cdots \implies R \\ \neg P \implies Q_1 \cdots \implies \neg R \\ \neg P \implies R \land \neg R \equiv \text{False} \\ \text{or } \neg P \implies \text{False} \end{array}$$

Contrapositive of  $\neg P \Longrightarrow False$  is  $True \Longrightarrow P$ . Theorem P is true. And proven.

# **Proof by Contraposition**

```
Thm: For n \in Z^+ and d|n. If n is odd then d is odd. n=2k+1 and n=k'd. what do we know about d? What to do? Is it even true? Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do? Goal: Prove P \implies Q. Assume \neg Q ...and prove \neg P. Conclusion: \neg Q \implies \neg P equivalent to P \implies Q. Proof: Assume \neg Q: d is even. d=2k. d|n so we have n=qd=q(2k)=2(kq)
```

#### Contradiction

n is even.  $\neg P$ 

**Theorem:**  $\sqrt{2}$  is irrational.

Assume  $\neg P$ :  $\sqrt{2} = a/b$  for  $a, b \in Z$ .

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 $a^2$  is even  $\implies a$  is even. a = 2k for some integer k

$$b^2 = 2k^2$$

 $b^2$  is even  $\implies b$  is even.

a and b have a common factor. Contradiction.

# Proof by contradiction: example

**Theorem:** There are infinitely many primes.

Proof:

▶ Assume finitely many primes:  $p_1,...,p_k$ .

Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

ightharpoonup q cannot be one of the primes as it is larger than any  $p_i$ .

▶ q has prime divisor p ("p > 1" = R) which is one of  $p_i$ .

▶ p divides both  $x = p_1 \cdot p_2 \cdots p_k$  and q, and divides q - x,

 $ightharpoonup p > p | q - x \implies p \le q - x = 1.$ 

▶ so  $p \le 1$ . (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

# Proof by cases.

**Theorem:** There exist irrational x and y such that  $x^y$  is rational.

Let  $x = y = \sqrt{2}$ .

Case 1:  $x^y = \sqrt{2}^{\sqrt{2}}$  is rational. Done!

Case 2:  $\sqrt{2}^{\sqrt{2}}$  is irrational.

New values:  $x = \sqrt{2}^{\sqrt{2}}$ ,  $y = \sqrt{2}$ .

 $\triangleright$ 

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational  $x^y$  (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

### Product of first *k* primes..

Did we prove?

▶ "The product of the first *k* primes plus 1 is prime."

► No.

▶ The chain of reasoning started with a false statement.

Consider example..

 $\triangleright$  2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509

▶ There is a prime *in between* 13 and q = 30031 that divides q.

 $\triangleright$  Proof assumed no primes in between  $p_k$  and q.

### Be careful.

Theorem: 3 = 4

**Proof:** Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get

4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!

#### Proof by cases.

**Theorem:**  $x^5 - x + 1 = 0$  has no solution in the rationals.

Proof: First a lemma...

**Lemma:** If x is a solution to  $x^5 - x + 1 = 0$  and x = a/b for  $a, b \in Z$ ,

then both a and b are even.

Reduced form  $\frac{a}{b}$ : a and b can't both be even! + Lemma

 $\implies$  no rational solution.

**Proof of lemma:** Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by  $b^5$ ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

### Be really careful!

Theorem: 1 = 2

**Proof:** For 
$$x = y$$
, we have  $(x^2 - xy) = x^2 - y^2$   
 $x(x - y) = (x + y)(x - y)$   
 $x = (x + y)$ 

x = 2x 1 = 2

Poll: What is the problem?

(A) Assumed what you were proving.

(B) No problem. Its fine.

(C) x - y is zero.

(D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$  does not mean  $Q \Longrightarrow P$ .

# Summary: Note 2.

Direct Proof:

To Prove:  $P \Longrightarrow Q$ . Assume P. Prove Q.

By Contraposition: To Prove:  $P \Longrightarrow Q$  Assume  $\neg Q$ . Prove  $\neg P$ .

By Contradiction:

To Prove: P Assume  $\neg P$ . Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either  $\sqrt{2}$  and  $\sqrt{2}$  worked. or  $\sqrt{2}$  and  $\sqrt{2}^{\sqrt{2}}$  worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse. ...

# CS70: Note 3. Induction!

Poll. What's the biggest number?

- (A) 100
- (B) 101
- (C) n+1
- (D) infinity.
- (E) This is about the "recursive leap of faith."