CS70.

- 1. Random Variables: Brief Review
- 2. Joint Distributions.
- 3. Linearity of Expectation

Random Variables: Definitions Definition

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \mathfrak{R}$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \mathfrak{R}$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \mathfrak{R}$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \mathfrak{R}$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$\Pr[X \in A] = \Pr[X^{-1}(A)].$$

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \mathfrak{R}$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$\Pr[X \in A] = \Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, \Pr[X = a]) : a \in \mathscr{A}\},\$$

where \mathscr{A} is the *range* of X.

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \mathfrak{R}$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$\Pr[X \in A] = \Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, \Pr[X = a]) : a \in \mathscr{A}\},\$$

where \mathscr{A} is the *range* of *X*. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}.$

Binomial Distribution: B(n,p), For $0 \le i \le n$, Pr[X = i] =

Binomial Distribution: B(n,p), For $0 \le i \le n$, $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$.

Binomial Distribution: B(n,p), For $0 \le i \le n$, $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$. Geometric Distribution: G(p), For $i \ge 1$, Pr[X = i] =

Binomial Distribution: B(n,p), For $0 \le i \le n$, $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$. Geometric Distribution: G(p), For $i \ge 1$, $Pr[X = i] = (1-p)^{i-1}p$.

Binomial Distribution: B(n,p), For $0 \le i \le n$, $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$. Geometric Distribution: G(p), For $i \ge 1$, $Pr[X = i] = (1-p)^{i-1}p$. Poisson:

Binomial Distribution: B(n,p), For $0 \le i \le n$, $Pr[X = i] = {n \choose i} p^i (1-p)^{n-i}$. Geometric Distribution: G(p), For $i \ge 1$, $Pr[X = i] = (1-p)^{i-1}p$. Poisson: Next up.

McDonalds: How many arrive at McDonalds in an hour?

McDonalds: How many arrive at McDonalds in an hour? Know: average is λ .

McDonalds: How many arrive at McDonalds in an hour? Know: average is λ . What is distribution?

McDonalds: How many arrive at McDonalds in an hour?

Know: average is λ .

What is distribution?

```
Example: Pr[2\lambda \text{ arrivals }]?
```

McDonalds: How many arrive at McDonalds in an hour?

Know: average is λ .

What is distribution?

```
Example: Pr[2\lambda \text{ arrivals }]?
```

Assumption: "arrivals are independent."

McDonalds: How many arrive at McDonalds in an hour?

Know: average is λ .

What is distribution?

Example: $Pr[2\lambda \text{ arrivals }]$?

Assumption: "arrivals are independent."

Derivation: cut hour into *n* intervals of length 1/n.

McDonalds: How many arrive at McDonalds in an hour?

Know: average is λ .

What is distribution?

Example: $Pr[2\lambda \text{ arrivals }]$?

Assumption: "arrivals are independent."

Derivation: cut hour into *n* intervals of length 1/n. *Pr*[two arrivals] is " $(\lambda/n)^2$ " or small if *n* is large. McDonalds: How many arrive at McDonalds in an hour?

Know: average is λ .

What is distribution?

Example: $Pr[2\lambda \text{ arrivals }]$?

Assumption: "arrivals are independent."

Derivation: cut hour into *n* intervals of length 1/n. *Pr*[two arrivals] is " $(\lambda/n)^2$ " or small if *n* is large. Model with binomial.

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads.

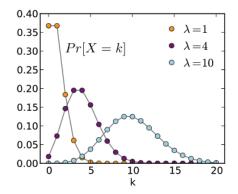
Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$.

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large n."

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large n."



$$Pr[X = m] = {\binom{n}{m}}p^m(1-p)^{n-m}$$
, with $p =$

$$Pr[X = m] = {n \choose m} p^m (1-p)^{n-m}$$
, with $p = \lambda/n$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$
$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n$$

$$Pr[X = m] = {\binom{n}{m}} p^{m} (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^{m} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n} \approx^{(3)} \frac{\lambda^{m}}{m!} e^{-\lambda}.$$

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^{m} (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^{m} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n} \approx^{(3)} \frac{\lambda^{m}}{m!} e^{-\lambda}.$$

(1) and (2) cuz *m* is constant and $n \rightarrow \infty$;

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^{m} (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^{m} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n} \approx^{(3)} \frac{\lambda^{m}}{m!} e^{-\lambda}.$$

(1) and (2) cuz *m* is constant and $n \rightarrow \infty$; for (3) we used $(1 - a/n)^n \approx e^{-a}$.

Definition: The expected value

Definition: The expected value (or mean, or expectation)

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Theorem:

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$
$$E[X] = \sum_{a} a \times Pr[X = a]$$

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$
$$= \sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$

=
$$\sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

=
$$\sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$

=
$$\sum_{a} a \times \sum_{\omega:X(\omega)=a} Pr[\omega]$$

=
$$\sum_{a} \sum_{\omega:X(\omega)=a} X(\omega)Pr[\omega]$$

=
$$\sum_{\omega} X(\omega)Pr[\omega]$$

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$

=
$$\sum_{a} a \times \sum_{\omega:X(\omega)=a} Pr[\omega]$$

=
$$\sum_{a} \sum_{\omega:X(\omega)=a} X(\omega)Pr[\omega]$$

=
$$\sum_{\omega} X(\omega)Pr[\omega]$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Simeon Poisson

The Poisson distribution is named after:

Simeon Poisson

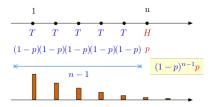
The Poisson distribution is named after:

Equal Time: B. Geometric

The geometric distribution is named after:

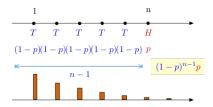
Equal Time: B. Geometric

The geometric distribution is named after:



Equal Time: B. Geometric

The geometric distribution is named after:



I could not find a picture of D. Binomial, sorry.

Flip a fair coin three times.

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

X = number of *H*'s: {3,2,2,2,1,1,1,0}.

Flip a fair coin three times.

 $\Omega = \{ \textit{HHH}, \textit{HHT}, \textit{HTH}, \textit{THH}, \textit{HTT}, \textit{THT}, \textit{TTH}, \textit{TTT} \}.$

X = number of *H*'s: {3,2,2,2,1,1,1,0}.

Thus,

$$\sum_{\omega} X(\omega) \Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$ X = number of H's: $\{3,2,2,2,1,1,1,0\}.$

Thus,

$$\sum_{\omega} X(\omega) \Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times \Pr[X=a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

Win or Lose.

Expected winnings for heads/tails games, with 3 flips?

Win or Lose.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means. The expected value of X is not the value that you expect!

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1 + \dots + X_n}{n}, \text{ when } n \gg 1.$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1+\cdots+X_n}{n}, \text{ when } n \gg 1.$$

The fact that this average converges to E[X] is a theorem:

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1+\cdots+X_n}{n}, \text{ when } n \gg 1.$$

The fact that this average converges to E[X] is a theorem: the Law of Large Numbers. (See later.)

Multiple Random Variables.

Experiment: toss two coins. $\Omega = \{HH, TH, HT, TT\}$.

Multiple Random Variables.

Experiment: toss two coins. $\Omega = \{HH, TH, HT, TT\}.$

 $X_1(\omega) = \begin{cases} 1, & \text{if coin 1 is heads} \\ 0, & \text{otherwise} \end{cases} \qquad X_2(\omega) = \begin{cases} 1, & \text{if coin 2 is heads} \\ 0, & \text{otherwise} \end{cases}$

Joint Distribution: $\{(a, b, Pr[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\}$, where $\mathcal{A}(\mathcal{B})$ is possible values of X(Y).

Joint Distribution: $\{(a, b, Pr[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\}$, where $\mathcal{A}(\mathcal{B})$ is possible values of X(Y).

$$\sum_{a \in \mathscr{A}, b \in \mathscr{B}} \Pr[X = a, Y = b] =$$

Joint Distribution: $\{(a, b, Pr[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\}$, where $\mathcal{A}(\mathcal{B})$ is possible values of X(Y).

$$\sum_{a \in \mathscr{A}, b \in \mathscr{B}} \Pr[X = a, Y = b] = 1$$

Joint Distribution: $\{(a, b, Pr[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\}$, where $\mathcal{A}(\mathcal{B})$ is possible values of X(Y).

$$\sum_{a \in \mathscr{A}, b \in \mathscr{B}} \Pr[X = a, Y = b] = 1$$

Joint Distribution: $\{(a, b, Pr[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\}$, where $\mathcal{A}(\mathcal{B})$ is possible values of X(Y).

$$\sum_{a \in \mathscr{A}, b \in \mathscr{B}} \Pr[X = a, Y = b] = 1$$

X/Y	1	2	3	Х
1	.2	.1	.1	.4
2	0	0	.3	.3
3	.1	0	.2	.3
Y	.3	.1	.2	

Joint Distribution: $\{(a, b, Pr[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\}$, where $\mathcal{A}(\mathcal{B})$ is possible values of X(Y).

$$\sum_{a \in \mathscr{A}, b \in \mathscr{B}} \Pr[X = a, Y = b] = 1$$

X/Y	1	2	3	X
1	.2	.1	.1	.4
2	0	0	.3	.3
3	.1	0	.2	.3
Y	.3	.1	.6	

Joint Distribution: $\{(a, b, Pr[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\}$, where $\mathcal{A}(\mathcal{B})$ is possible values of X(Y).

$$\sum_{a \in \mathscr{A}, b \in \mathscr{B}} \Pr[X = a, Y = b] = 1$$

X/Y	1	2	3	Х
1	.2	.1	.1	.4
2	0	0	.3	.3
3	.1	0	.2	.3
Y	.3	.1	.6	

Conditional Probability:
$$Pr[X = a | Y = b] = \frac{Pr[X=a, Y=b]}{Pr[Y=b]}$$
.

Events A, B are independent if

• Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.

• Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.

Events A, B, C are mutually independent if

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

• Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.

Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

• Events $\{A_n, n \ge 0\}$ are mutually independent if

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events $\{A_n, n \ge 0\}$ are mutually independent if
- Example: X, Y ∈ {0,1} two fair coin flips ⇒ X, Y, X ⊕ Y are pairwise independent but not mutually independent.

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are independent

and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.

- Events $\{A_n, n \ge 0\}$ are mutually independent if
- Example: X, Y ∈ {0,1} two fair coin flips ⇒ X, Y, X ⊕ Y are pairwise independent but not mutually independent.
- ► Example: X, Y, Z ∈ {0,1} three fair coin flips are mutually independent.

Definition: Independence

Definition: Independence

The random variables X and Y are **independent** if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

X, Y are independent if and only if

Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b], for all *a* and *b*.

Definition: Independence

The random variables X and Y are independent if and only if

Pr[Y = b|X = a] = Pr[Y = b], for all *a* and *b*.

Fact:

X, Y are independent if and only if

Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b], for all *a* and *b*.

Follows from $Pr[A \cap B] = Pr[A|B]Pr[B]$ (Product rule.)

Independence: Examples

Example 1 Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Independence: Examples

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0.$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$$
.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X=a, Y=b] = \binom{3}{a}\binom{2}{b}2^{-5}$$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0.$$

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X = a, Y = b] = {3 \choose a} {2 \choose b} 2^{-5} = {3 \choose a} 2^{-3} \times {2 \choose b} 2^{-2}$$

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$$
.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X = a, Y = b] = {3 \choose a} {2 \choose b} 2^{-5} = {3 \choose a} 2^{-3} \times {2 \choose b} 2^{-2} = Pr[X = a] Pr[Y = b].$$

Theorem: E[X + Y] = E[X] + E[Y]

Theorem:

$$E[X + Y] = E[X] + E[Y]$$

 $E[cX] = cE[X]$

Theorem: E[X + Y] = E[X] + E[Y] E[cX] = cE[X]Proof: $E[X] = \sum_{\omega \in \Omega} X(\omega) \times P[\omega]$.

Theorem: E[X + Y] = E[X] + E[Y] E[cX] = cE[X]Proof: $E[X] = \sum_{\omega \in \Omega} X(\omega) \times P[\omega]$.

> $E[X + Y] = \sum_{\omega \in \Omega} (X(\omega) + Y(\omega))Pr[\omega]$ = $\sum_{\omega \in \Omega} X(\omega)Pr[\omega] + Y(\omega)Pr[\omega]$ = $\sum_{\omega \in \Omega} X(\omega)Pr[\omega] + \sum_{\omega \in \Omega} Y(\omega)Pr[\omega]$ = E[X] + E[Y]

Definition

Definition

Let A be an event. The random variable X defined by

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] =

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \left\{ egin{array}{cc} 1, & ext{if } \omega \in A \ 0, & ext{if } \omega
otin A \end{array}
ight.$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] =

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \left\{ egin{array}{cc} 1, & ext{if } \omega \in A \ 0, & ext{if } \omega
otin A \end{array}
ight.$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A].

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

 $1\{\omega \in A\}$ or $1_A(\omega)$.

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Thus, we will write $X = 1_A$.

Theorem:

Theorem: Expectation is linear

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

Proof:

 $E[a_1X_1+\cdots+a_nX_n]$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n] = \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n] = \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega] = \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

= $\sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$
= $\sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$
= $a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note:

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note: If we had defined $Y = a_1 X_1 + \dots + a_n X_n$ has had tried to compute $E[Y] = \sum_y y Pr[Y = y]$, we would have been in trouble!

Roll a die n times.

Roll a die *n* times.

 X_m = number of pips on roll *m*.

Roll a die *n* times.

 X_m = number of pips on roll m.

 $X = X_1 + \cdots + X_n$ = total number of pips in *n* rolls.

Roll a die *n* times.

 X_m = number of pips on roll m.

 $X = X_1 + \cdots + X_n$ = total number of pips in *n* rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$

Roll a die *n* times.

 X_m = number of pips on roll m.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n],$

Roll a die *n* times.

 X_m = number of pips on roll m.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity

Roll a die *n* times.

 X_m = number of pips on roll m.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$,

Roll a die *n* times.

 X_m = number of pips on roll m.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Roll a die *n* times.

 X_m = number of pips on roll m.

 $X = X_1 + \cdots + X_n$ = total number of pips in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} =$$

Roll a die *n* times.

 X_m = number of pips on roll m.

 $X = X_1 + \cdots + X_n$ = total number of pips in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} =$$

Roll a die *n* times.

 X_m = number of pips on roll m.

 $X = X_1 + \cdots + X_n$ = total number of pips in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Roll a die *n* times.

 X_m = number of pips on roll m.

 $X = X_1 + \cdots + X_n$ = total number of pips in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X]=\frac{7n}{2}.$$

Roll a die *n* times.

 X_m = number of pips on roll m.

 $X = X_1 + \cdots + X_n$ = total number of pips in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X]=\frac{7n}{2}.$$

Note: Computing $\sum_{x} xPr[X = x]$ directly is not easy!

Hand out assignments at random to *n* students.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where

 $X_m = 1$ {student *m* gets his/her own assignment back}.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where

 $X_m = 1$ {student *m* gets his/her own assignment back}.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

One has

 $E[X] = E[X_1 + \cdots + X_n]$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n],$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$,

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$\begin{split} E[X] &= E[X_1 + \dots + X_n] \\ &= E[X_1] + \dots + E[X_n], \text{ by linearity} \\ &= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\ &= nPr[X_1 = 1], \end{split}$$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$\begin{split} E[X] &= E[X_1 + \dots + X_n] \\ &= E[X_1] + \dots + E[X_n], \text{ by linearity} \\ &= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\ &= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator} \end{split}$$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$\begin{split} E[X] &= E[X_1 + \dots + X_n] \\ &= E[X_1] + \dots + E[X_n], \text{ by linearity} \\ &= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\ &= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator} \\ &= n(1/n), \end{split}$$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the *n* assignments

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the *n* assignments

= 1.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the *n* assignments
= 1.

Note that linearity holds even though the X_m are not independent (whatever that means).

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the *n* assignments
= 1.

Note that linearity holds even though the X_m are not independent (whatever that means).

Note: What is Pr[X = m]?

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \dots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the *n* assignments
= 1.

Note that linearity holds even though the X_m are not independent (whatever that means).

Note: What is Pr[X = m]? Tricky

Flip *n* coins with heads probability *p*.

Flip *n* coins with heads probability *p*. *X* - number of heads

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

E[X]

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i]$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ...

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or...

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or ... a better approach: Let

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or ... a better approach: Let

$$X_i = \begin{cases} 1 & ext{if } ith flip is heads} \\ 0 & ext{otherwise} \end{cases}$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times \Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or ... a better approach: Let

$$X_{i} = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or ... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or ... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$ Moreover $X = X_1 + \cdots + X_n$ and

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or ... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$ Moreover $X = X_1 + \cdots + X_n$ and $E[X] = E[X_1] + E[X_2] + \cdots + E[X_n]$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or ... a better approach: Let

$$X_{i} = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots + X_n$ and
$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i]$$

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or ... a better approach: Let

$$X_{i} = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots + X_n$ and
$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Assume A and B are disjoint events.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

 $Pr[A \cup B] = E[1_{A \cup B}]$

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

 $Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] =$

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

 $Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] =$

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

 $Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

$$Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$$

In general, $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A\cap B}(\omega)$.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

$$Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$$

In general, $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A\cap B}(\omega)$. Taking expectation, we get $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

$$Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$$

In general, $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A\cap B}(\omega)$. Taking expectation, we get $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$.

Observe that if $Y(\omega) = b$ for all ω , then E[Y] = b.

Assume *A* and *B* are disjoint events. Then $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$. Taking expectation, we get

$$Pr[A \cup B] = E[1_{A \cup B}] = E[1_A + 1_B] = E[1_A] + E[1_B] = Pr[A] + Pr[B].$$

In general, $1_{A\cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A\cap B}(\omega)$. Taking expectation, we get $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$.

Observe that if $Y(\omega) = b$ for all ω , then E[Y] = b. Thus, E[X+b] = E[X] + b.

Experiment: Throw *m* balls into *n* bins.

Experiment: Throw *m* balls into *n* bins.

Y - number of empty bins.

Experiment: Throw *m* balls into *n* bins.

Y - number of empty bins.

Distribution is horrible.

Experiment: Throw *m* balls into *n* bins.

- Y number of empty bins.
- Distribution is horrible.
- Expectation?

Experiment: Throw *m* balls into *n* bins.

- Y number of empty bins.
- Distribution is horrible.

Experiment: Throw *m* balls into *n* bins.

Y - number of empty bins.

Distribution is horrible.

$$Y=X_1+\cdots X_n.$$

Experiment: Throw *m* balls into *n* bins.

Y - number of empty bins.

Distribution is horrible.

$$Y = X_1 + \cdots X_n.$$

$$Pr[X_1 = 1] = (1 - \frac{1}{n})^m.$$

Experiment: Throw *m* balls into *n* bins.

Y - number of empty bins.

Distribution is horrible.

$$Y = X_1 + \dots + X_n.$$

$$Pr[X_1 = 1] = (1 - \frac{1}{n})^m. \to E[Y] = n(1 - \frac{1}{n})^m.$$

Experiment: Throw *m* balls into *n* bins.

Y - number of empty bins.

Distribution is horrible.

$$Y = X_1 + \cdots X_n.$$

$$Pr[X_1 = 1] = (1 - \frac{1}{n})^m. \rightarrow E[Y] = n(1 - \frac{1}{n})^m.$$

For $n = m$ and large n , $(1 - 1/n)^n \approx \frac{1}{n}.$

Experiment: Throw *m* balls into *n* bins.

Y - number of empty bins.

Distribution is horrible.

$$Y = X_1 + \cdots X_n.$$

$$Pr[X_1 = 1] = (1 - \frac{1}{n})^m. \rightarrow E[Y] = n(1 - \frac{1}{n})^m.$$

For $n = m$ and large n , $(1 - 1/n)^n \approx \frac{1}{n}.$

Experiment: Throw *m* balls into *n* bins.

Y - number of empty bins.

Distribution is horrible.

Expectation? X_i - indicator for bin *i* being empty.

 $Y = X_1 + \cdots X_n.$ $Pr[X_1 = 1] = (1 - \frac{1}{n})^m. \rightarrow E[Y] = n(1 - \frac{1}{n})^m.$ For n = m and large n, $(1 - 1/n)^n \approx \frac{1}{e}.$ $\frac{n}{e} \approx 0.368n$ empty bins on average.

Experiment: Get random coupon from *n* until get all *n* coupons.

Experiment: Get random coupon from *n* until get all *n* coupons. **Outcomes:** {123145...,56765...}

Experiment: Get random coupon from *n* until get all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome.

Experiment: Get random coupon from *n* until get all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome.

Experiment: Get random coupon from *n* until get all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome.

Today: *E*[*X*]?

Experiment: Get random coupon from *n* until get all *n* coupons. **Outcomes:** {123145...,56765...} **Random Variable:** *X* - length of outcome.

Today: *E*[*X*]?

Geometric Distribution: Expectation

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
$$pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
$$pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots$$

by subtracting the previous two identities

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
pE[X] = p+ (1-p)p + (1-p)^2p + (1-p)^3p + \cdots
by subtracting the previous two identities
= $\sum_{n=1}^{\infty} Pr[X = n] =$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
pE[X] = p+ (1-p)p+ (1-p)^2p + (1-p)^3p + \cdots
by subtracting the previous two identities
= $\sum_{n=1}^{\infty} Pr[X = n] = 1.$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
pE[X] = p+ (1-p)p + (1-p)^2p + (1-p)^3p + \cdots
by subtracting the previous two identities
=
$$\sum_{n=1}^{\infty} Pr[X = n] = 1.$$

Hence,

$$E[X]=\frac{1}{p}.$$

X-time to get *n* coupons.

X-time to get *n* coupons.

 X_1 - time to get first coupon.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X-time to get *n* coupons.

- X_1 time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 time to get second coupon after getting first.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

"]

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk

X-time to get *n* coupons.

- X_1 time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]?$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric !

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

E[*X*₂]? Geometric ! !

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

```
E[X<sub>2</sub>]? Geometric !!!
```

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

 $E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} =$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* - 1rst coupons"] = $\frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* – 1rst coupons"] = $\frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i]$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

Pr["getting *i*th coupon|"got *i* – 1rst coupons" $] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$ $E[X_i] = \frac{1}{p}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting$ *i*th coupon|"got*i* $- 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, \end{aligned}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n - i + 1}, i = 1, 2, \dots, n. \end{aligned}$

 $E[X] = E[X_1] + \cdots + E[X_n] =$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting$ *i*th coupon|"got*i* $- 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr["getting$ *i*th coupon|"got*i* $- 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n)$$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk first coupon"] = $\frac{n-1}{n}$

$$E[X_2]$$
? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $\begin{aligned} & Pr[\text{"getting } i\text{th coupon}|\text{"got } i-1\text{rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \\ & E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \dots, n. \end{aligned}$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Review: Harmonic sum

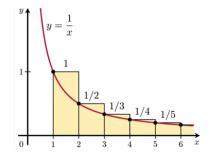
.

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

Review: Harmonic sum

.

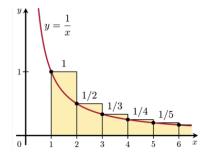
$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$



Review: Harmonic sum

٠

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$



A good approximation is

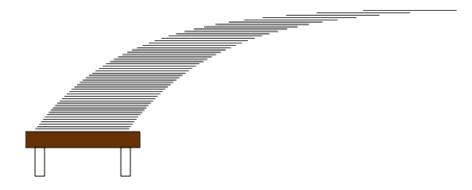
 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

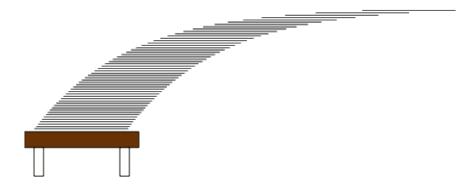
Harmonic sum: Paradox

Consider this stack of cards (no glue!):



Harmonic sum: Paradox

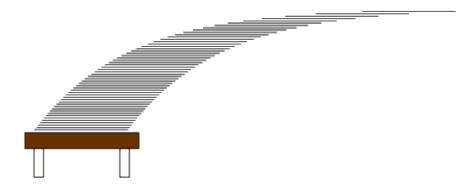
Consider this stack of cards (no glue!):



If each card has length 2, the stack can extend H(n) to the right of the table.

Harmonic sum: Paradox

Consider this stack of cards (no glue!):



If each card has length 2, the stack can extend H(n) to the right of the table. As *n* increases, you can go as far as you want!

Paradox

par·a·dox /ˈperəˌdäks/

noun

a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.

"a potentially serious conflict between quantum mechanics and the general theory of relativity known as the information paradox"

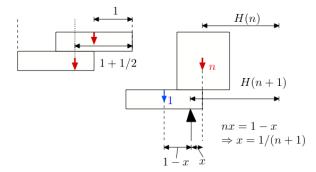
 a seemingly absurd or self-contradictory statement or proposition that when investigated or explained may prove to be well founded or true.

"in a paradox, he has discovered that stepping back from his job has increased the rewards he gleans from it"

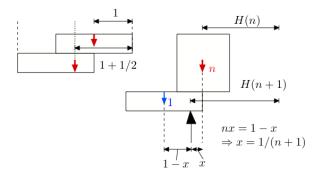
synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency, incongruity; More

a situation, person, or thing that combines contradictory features or qualities.
 "the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox"

Stacking

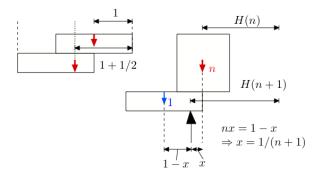


Stacking



The cards have width 2.

Stacking



The cards have width 2. Induction shows that the center of gravity after *n* cards is H(n) away from the right-most edge. Video.

Calculating E[g(X)]Let Y = g(X).

Calculating E[g(X)]Let Y = g(X). Assume that we know the distribution of X.

Calculating E[g(X)]Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$\Pr[Y = y] = \Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{X} \sum_{\omega \in X^{-1}(X)} g(X(\omega)) Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$

=
$$\sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

=
$$\sum_{x} g(x) Pr[X = x].$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$.

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^2 \frac{1}{6}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{62} \\ 1, & \text{w.p. } \frac{2}{6} \\ \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{62} \\ 1, & \text{w.p. } \frac{2}{62} \\ 0, & \text{w.p. } \frac{1}{6} \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

$$Y = \begin{cases} 4, & \text{w.p.} \ \frac{2}{6} \\ 1, & \text{w.p.} \ \frac{2}{6} \\ 0, & \text{w.p.} \ \frac{1}{6} \\ 9, & \text{w.p.} \ \frac{1}{6} \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

$$Y = \begin{cases} 4, & \text{w.p.} \ \frac{2}{6} \\ 1, & \text{w.p.} \ \frac{2}{6} \\ 0, & \text{w.p.} \ \frac{1}{6} \\ 9, & \text{w.p.} \ \frac{1}{6} \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= $\{4+1+0+1+4+9\}\frac{1}{6} = \frac{19}{6}.$

Method 1 - We find the distribution of $Y = X^2$:

$$Y = \begin{cases} 4, & \text{w.p.} \ \frac{2}{6} \\ 1, & \text{w.p.} \ \frac{2}{6} \\ 0, & \text{w.p.} \ \frac{1}{6} \\ 9, & \text{w.p.} \ \frac{1}{6}. \end{cases}$$

Thus,

$$E[Y] = 4\frac{2}{6} + 1\frac{2}{6} + 0\frac{1}{6} + 9\frac{1}{6} = \frac{19}{6}.$$

Summary

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$. Random Variable: Function on Sample Space. Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a]$

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$. Random Variable: Function on Sample Space. Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$. Random Variable: Function on Sample Space. Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$. Expectation: $E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a]$.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation: $E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$

Many Random Variables: each one function on a sample space.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation: $E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b]$

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation: $E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b] = 1$.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation:
$$E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b] = 1$.

Linearity of Expectation: E[X + Y] = E[X] + E[Y].

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation:
$$E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b] = 1$.

Linearity of Expectation: E[X + Y] = E[X] + E[Y].

Applications: compute expectations by decomposing.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation:
$$E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b] = 1$.

Linearity of Expectation: E[X + Y] = E[X] + E[Y].

Applications: compute expectations by decomposing.

Indicators: Empty bins, Fixed points.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation:
$$E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b] = 1$.

Linearity of Expectation: E[X + Y] = E[X] + E[Y].

Applications: compute expectations by decomposing.

Indicators: Empty bins, Fixed points. Time to Coupon: Sum times to "next" coupon.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation:
$$E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b] = 1$.

Linearity of Expectation: E[X + Y] = E[X] + E[Y].

Applications: compute expectations by decomposing.

Indicators: Empty bins, Fixed points. Time to Coupon: Sum times to "next" coupon.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.

Expectation:
$$E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b] = 1$.

Linearity of Expectation: E[X + Y] = E[X] + E[Y].

Applications: compute expectations by decomposing.

Indicators: Empty bins, Fixed points. Time to Coupon: Sum times to "next" coupon.

Y = f(X) is Random Variable.

Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

- Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.
- Expectation: $E[X] = \sum_{\omega} Pr[\omega] = \sum_{a} Pr[X = a].$

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$. $\sum_{a,b} Pr[X = a, Y = b] = 1$.

Linearity of Expectation: E[X + Y] = E[X] + E[Y].

Applications: compute expectations by decomposing.

Indicators: Empty bins, Fixed points. Time to Coupon: Sum times to "next" coupon.

Y = f(X) is Random Variable. Distribution of Y from distribution of X.