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1. Random Variables: Brief Review

2. Joint Distributions.

3. Linearity of Expectation



Random Variables: Definitions
Definition
A random variable, X , for a random experiment with sample space Ω
is a function X : Ω→ℜ.

Thus, X (·) assigns a real number X (ω) to each ω ∈ Ω.

Definitions
(a) For a ∈ℜ, one defines

X−1(a) := {ω ∈ Ω | X (ω) = a}.
(b) For A⊂ℜ, one defines

X−1(A) := {ω ∈ Ω | X (ω) ∈ A}.
(c) The probability that X = a is defined as

Pr [X = a] = Pr [X−1(a)].

(d) The probability that X ∈ A is defined as

Pr [X ∈ A] = Pr [X−1(A)].

(e) The distribution of a random variable X , is

{(a,Pr [X = a]) : a ∈A },

where A is the range of X . That is, A = {X (ω),ω ∈ Ω}.



Some Distributions.

Binomial Distribution: B(n,p), For 0≤ i ≤ n,
Pr [X = i] =

(n
i

)
pi (1−p)n−i . Geometric Distribution: G(p), For i ≥ 1,

Pr [X = i] = (1−p)i−1p. Poisson: Next up.



Poisson: Motivation and derivation.

McDonalds: How many arrive at McDonalds in an hour?

Know: average is λ .

What is distribution?

Example: Pr [2λ arrivals ]?

Assumption: “arrivals are independent.”

Derivation: cut hour into n intervals of length 1/n.
Pr [ two arrivals ] is “(λ/n)2” or small if n is large.
Model with binomial.



Poisson

Experiment: flip a coin n times. The coin is such that Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).

Poisson Distribution is distribution of X “for large n.”



Poisson

Experiment: flip a coin n times. The coin is such that Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).
Poisson Distribution is distribution of X “for large n.”
We expect X � n. For m� n one has

Pr [X = m] =

(
n
m

)
pm(1−p)n−m, with p = λ/n

=
n(n−1) · · ·(n−m + 1)

m!

(
λ

n

)m(
1− λ

n

)n−m

=
n(n−1) · · ·(n−m + 1)

nm
λ m

m!

(
1− λ

n

)n−m

≈(1) λ m

m!

(
1− λ

n

)n−m

≈(2) λ m

m!

(
1− λ

n

)n

≈ λ m

m!
e−λ .

For (1) we used m� n; for (2) we used (1−a/n)n ≈ e−a.



Expectation - Definition
Definition: The expected value (or mean, or expectation) of a
random variable X is

E [X ] = ∑
a

a×Pr [X = a].

Theorem:

E [X ] = ∑
ω

X (ω)×Pr [ω].

Proof: E [X ] = ∑
a

a×Pr [X = a]

= ∑
a

a× ∑
ω:X (ω)=a

Pr [ω]

= ∑
a

∑
ω:X (ω)=a

X (ω)Pr [ω]

= ∑
ω

X (ω)Pr [ω]



Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .

Proof:

E [X ] =
∞

∑
m=1

m× λ m

m!
e−λ = e−λ

∞

∑
m=1

λ m

(m−1)!

= e−λ
∞

∑
m=0

λ m+1

m!
= e−λ

λ

∞

∑
m=0

λ m

m!

= e−λ
λeλ = λ .



Simeon Poisson

The Poisson distribution is named after:



Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.



Recall: An Example

Flip a fair coin three times.

Ω = {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}.
X = number of H ’s: {3,2,2,2,1,1,1,0}.
Thus,

∑
ω

X (ω)Pr [ω] = {3 + 2 + 2 + 2 + 1 + 1 + 1 + 0}× 1
8
.

Also,

∑
a

a×Pr [X = a] = 3× 1
8

+ 2× 3
8

+ 1× 3
8

+ 0× 1
8
.



Win or Lose.

Expected winnings for heads/tails games, with 3 flips?
Recall the definition of the random variable X :
{HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}→ {3,1,1,−1,1,−1,−1,−3}.

E [X ] = 3× 1
8

+ 1× 3
8
−1× 3

8
−3× 1

8
= 0.

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!
It is the average value per experiment, if you perform the experiment
many times:

X1 + · · ·+ Xn

n
, when n� 1.

The fact that this average converges to E [X ] is a theorem:
the Law of Large Numbers. (See later.)



Multiple Random Variables.

Experiment: toss two coins. Ω = {HH,TH,HT ,TT}.

X1(ω) =

{
1, if coin 1 is heads
0, otherwise X2(ω) =

{
1, if coin 2 is heads
0, otherwise



Multiple Random Variables: setup.

Joint Distribution: {(a,b,Pr [X = a,Y = b]) : a ∈A ,b ∈B}, where
A (B) is possible values of X (Y ).

∑
a∈A ,b∈B

Pr [X = a,Y = b] = 1

Marginal for X : Pr [X = a] = ∑b∈B Pr [X = a,Y = b].
Marginal for Y : Pr [Y = b] = ∑a∈A Pr [X = a,Y = b].

X/Y 1 2 3 X
1 .2 .1 .1 .4
2 0 0 .3 .3
3 .1 0 .2 .3
Y .3 .1 .2 .6

Conditional Probability: Pr [X = a|Y = b] = Pr [X=a,Y =b]
Pr [Y =b] .



Review: Independence of Events

I Events A,B are independent if Pr [A∩B] = Pr [A]Pr [B].

I Events A,B,C are mutually independent if

A,B are independent, A,C are independent, B,C are
independent

and Pr [A∩B∩C] = Pr [A]Pr [B]Pr [C].

I Events {An,n ≥ 0} are mutually independent if . . ..

I Example: X ,Y ∈ {0,1} two fair coin flips⇒ X ,Y ,X ⊕Y are
pairwise independent but not mutually independent.

I Example: X ,Y ,Z ∈ {0,1} three fair coin flips are mutually
independent.



Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

Pr [Y = b|X = a] = Pr [Y = b], for all a and b.

Fact:

X ,Y are independent if and only if

Pr [X = a,Y = b] = Pr [X = a]Pr [Y = b], for all a and b.

Follows from Pr [A∩B] = Pr [A|B]Pr [B] (Product rule.)



Independence: Examples

Example 1
Roll two die. X ,Y = number of pips on the two dice. X ,Y are
independent.

Indeed: Pr [X = a,Y = b] = 1
36 ,Pr [X = a] = Pr [Y = b] = 1

6 .

Example 2
Roll two die. X = total number of pips, Y = number of pips on die 1
minus number on die 2. X and Y are not independent.

Indeed: Pr [X = 12,Y = 1] = 0 6= Pr [X = 12]Pr [Y = 1] > 0.

Example 3
Flip a fair coin five times, X = number of Hs in first three flips, Y =
number of Hs in last two flips. X and Y are independent.

Indeed:

Pr [X = a,Y = b] =

(
3
a

)(
2
b

)
2−5 =

(
3
a

)
2−3×

(
2
b

)
2−2 = Pr [X = a]Pr [Y = b].



Linearity of Expectation

Theorem:
E [X + Y ] = E [X ] + E [Y ]

E [cX ] = cE [X ]

Proof: E [X ] = ∑ω∈Ω X (ω)×P[ω].

E [X + Y ] = ∑
ω∈Ω

(X (ω) + Y (ω))Pr [ω]

= ∑
ω∈Ω

X (ω)Pr [ω] + Y (ω)Pr [ω]

= ∑
ω∈Ω

X (ω)Pr [ω] + ∑
ω∈Ω

Y (ω)Pr [ω]

= E [X ] + E [Y ]



Indicators

Definition
Let A be an event. The random variable X defined by

X (ω) =

{
1, if ω ∈ A
0, if ω /∈ A

is called the indicator of the event A.

Note that Pr [X = 1] = Pr [A] and Pr [X = 0] = 1−Pr [A].

Hence,
E [X ] = 1×Pr [X = 1] + 0×Pr [X = 0] = Pr [A].

This random variable X (ω) is sometimes written as

1{ω ∈ A} or 1A(ω).

Thus, we will write X = 1A.



Linearity of Expectation

Theorem: Expectation is linear

E [a1X1 + · · ·+ anXn] = a1E [X1] + · · ·+ anE [Xn].

Proof:

E [a1X1 + · · ·+ anXn]

= ∑
ω

(a1X1 + · · ·+ anXn)(ω)Pr [ω]

= ∑
ω

(a1X1(ω) + · · ·+ anXn(ω))Pr [ω]

= a1 ∑
ω

X1(ω)Pr [ω] + · · ·+ an ∑
ω

Xn(ω)Pr [ω]

= a1E [X1] + · · ·+ anE [Xn].

Note: If we had defined Y = a1X1 + · · ·+ anXn has had tried to
compute E [Y ] = ∑y yPr [Y = y ], we would have been in trouble!



Using Linearity - 1: Pips (dots) on dice

Roll a die n times.

Xm = number of pips on roll m.

X = X1 + · · ·+ Xn = total number of pips in n rolls.

E [X ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn], by linearity
= nE [X1], because the Xm have the same distribution

Now,

E [X1] = 1× 1
6

+ · · ·+ 6× 1
6

=
6×7

2
× 1

6
=

7
2
.

Hence,

E [X ] =
7n
2
.

Note: Computing ∑x xPr [X = x ] directly is not easy!



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X = X1 + · · ·+ Xn where
Xm = 1{student m gets his/her own assignment back}.
One has

E [X ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn], by linearity
= nE [X1], because all the Xm have the same distribution
= nPr [X1 = 1], because X1 is an indicator
= n(1/n), because student 1 is equally likely

to get any one of the n assignments
= 1.

Note that linearity holds even though the Xm are not independent
(whatever that means).

Note: What is Pr [X = m]? Tricky ....



Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr [X = i], for each i .

Pr [X = i] =

(
n
i

)
pi (1−p)n−i .

E [X ] = ∑
i

i×Pr [X = i] = ∑
i

i×
(

n
i

)
pi (1−p)n−i .

Uh oh. ... Or... a better approach: Let

Xi =

{
1 if i th flip is heads
0 otherwise

E [Xi ] = 1×Pr [“heads′′] + 0×Pr [“tails′′] = p.

Moreover X = X1 + · · ·Xn and

E [X ] = E [X1] + E [X2] + · · ·E [Xn] = n×E [Xi ]= np.



Using Linearity - 4

Assume A and B are disjoint events. Then 1A∪B(ω) = 1A(ω) + 1B(ω).

Taking expectation, we get

Pr [A∪B] = E [1A∪B] = E [1A + 1B] = E [1A] + E [1B] = Pr [A] + Pr [B].

In general, 1A∪B(ω) = 1A(ω) + 1B(ω)−1A∩B(ω).

Taking expectation, we get Pr [A∪B] = Pr [A] + Pr [B]−Pr [A∩B].

Observe that if Y (ω) = b for all ω, then E [Y ] = b.

Thus, E [X + b] = E [X ] + b.



Empty Bins

Experiment: Throw m balls into n bins.

Y - number of empty bins.

Distribution is horrible.

Expectation? Xi - indicator for bin i being empty.

Y = X1 + · · ·Xn.

Pr [X1 = 1] = (1− 1
n )m. → E [Y ] = n(1− 1

n )m.

For n = m and large n, (1−1/n)n ≈ 1
e .

n
e ≈ 0.368n empty bins on average.



Coupon Collectors Problem.

Experiment: Get random coupon from n until get all n coupons.
Outcomes: {123145...,56765...}
Random Variable: X - length of outcome.

Today: E [X ]?



Geometric Distribution: Expectation

X =D G(p), i.e., Pr [X = n] = (1−p)n−1p,n ≥ 1.

One has

E [X ] =
∞

∑
n=1

nPr [X = n] =
∞

∑
n=1

n(1−p)n−1p.

Thus,

E [X ] = p + 2(1−p)p + 3(1−p)2p + 4(1−p)3p + · · ·
(1−p)E [X ] = (1−p)p + 2(1−p)2p + 3(1−p)3p + · · ·

pE [X ] = p + (1−p)p + (1−p)2p + (1−p)3p + · · ·
by subtracting the previous two identities

=
∞

∑
n=1

Pr [X = n] = 1.

Hence,

E [X ] =
1
p
.



Time to collect coupons

X -time to get n coupons.

X1 - time to get first coupon. Note: X1 = 1. E(X1) = 1.

X2 - time to get second coupon after getting first.

Pr [“get second coupon”|“got milk—- first coupon”] = n−1
n

E [X2]? Geometric ! ! ! =⇒ E [X2] = 1
p = 1

n−1
n

= n
n−1 .

Pr [“getting i th coupon|“got i−1rst coupons”] = n−(i−1)
n = n−i+1

n

E [Xi ] = 1
p = n

n−i+1 , i = 1,2, . . . ,n.

E [X ] = E [X1] + · · ·+ E [Xn] =
n
n

+
n

n−1
+

n
n−2

+ · · ·+ n
1

= n(1 +
1
2

+ · · ·+ 1
n

) =: nH(n)≈ n(lnn + γ)



Review: Harmonic sum

H(n) = 1 +
1
2

+ · · ·+ 1
n
≈
∫ n

1

1
x

dx = ln(n).

.

A good approximation is

H(n)≈ ln(n) + γ where γ ≈ 0.58 (Euler-Mascheroni constant).



Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend H(n) to the right of the
table. As n increases, you can go as far as you want!



Paradox



Stacking

The cards have width 2. Induction shows that the center of gravity
after n cards is H(n) away from the right-most edge.
Video.

https://www.youtube.com/watch?v=53FMsMHWcVs


Calculating E [g(X )]
Let Y = g(X ). Assume that we know the distribution of X .

We want to calculate E [Y ].

Method 1: We calculate the distribution of Y :

Pr [Y = y ] = Pr [X ∈ g−1(y)] where g−1(x) = {x ∈ℜ : g(x) = y}.

This is typically rather tedious!

Method 2: We use the following result.

Theorem:
E [g(X )] = ∑

x
g(x)Pr [X = x ].

Proof:

E [g(X )] = ∑
ω

g(X (ω))Pr [ω] = ∑
x

∑
ω∈X−1(x)

g(X (ω))Pr [ω]

= ∑
x

∑
ω∈X−1(x)

g(x)Pr [ω] = ∑
x

g(x) ∑
ω∈X−1(x)

Pr [ω]

= ∑
x

g(x)Pr [X = x ].



An Example
Let X be uniform in {−2,−1,0,1,2,3}.
Let also g(X ) = X 2. Then (method 2)

E [g(X )] =
3

∑
x=−2

x2 1
6

= {4 + 1 + 0 + 1 + 4 + 9}1
6

=
19
6
.

Method 1 - We find the distribution of Y = X 2:

Y =


4, w.p. 2

6
1, w.p. 2

6
0, w.p. 1

6
9, w.p. 1

6 .

Thus,

E [Y ] = 4
2
6

+ 1
2
6

+ 0
1
6

+ 9
1
6

=
19
6
.



Summary

Probability Space: Ω, Pr [ω]≥ 0, ∑ω Pr [ω] = 1.

Random Variable: Function on Sample Space.

Distribution: Function Pr [X = a]≥ 0. ∑a Pr [X = a] = 1.

Expectation: E [X ] = ∑ω Pr [ω] = ∑a Pr [X = a].

Many Random Variables: each one function on a sample space.

Joint Distributions: Function Pr [X = a,Y = b]≥ 0.
∑a,b Pr [X = a,Y = b] = 1.

Linearity of Expectation: E [X + Y ] = E [X ] + E [Y ].

Applications: compute expectations by decomposing.

Indicators: Empty bins, Fixed points.
Time to Coupon: Sum times to “next” coupon.

Y = f (X ) is Random Variable.
Distribution of Y from distribution of X .


