Stars and Bars Poll

Mark whats correct.

- (A) ways to split n dollars among k: $\binom{n+k-1}{k-1}$
- (B) ways to split k dollars among n: $\binom{k+n-1}{n-1}$
- (C) ways to split 5 dollars among 3: $\binom{7}{5}$
- (D) ways to split 5 dollars among 3: $\binom{5}{5+3-1}$

All correct.

Poll

Mark whats corect.

- (A) $|10 \text{ digit numbers}| = 10^{10}$ (B) $|k \text{ coin tosses}| = 2^k$
- (C) $|10 \text{ digit numbers}| = 9 * 10^9$
- (D) |n| digit base m numbers $|m| = m^n$
- (E) |n| digit base m numbers |m-1| |m-1|
- (A) or (C)? (D) or (E)? (B) are correct.

Refresh: Counting.

First Rule of counting: Objects from a sequence of choices:

 n_i possibilitities for *i*th choice.

$$n_1 \times n_2 \times \cdots \times n_k$$
 objects.

Second Rule of counting: If order does not matter.

Count with order. Divide by number of orderings/sorted object.

Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.

Order doesn't matter. k stars n-1 bars.

Typically:
$$\binom{n+k-1}{k}$$
 or $\binom{n+k-1}{n-1}$.

Inclusion/Exclusion: two sets of objects.

Add number of each and then subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.

Pascal's Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.

RHS: Number of subsets of n+1 items size k.

LHS: $\binom{n}{k-1}$ counts subsets of n+1 items with first item.

 $\binom{n}{k}$ counts subsets of n+1 items without first item.

Disjoint - so add!

CS70: On to probability.

Modeling Uncertainty: Probability Space

- 1. Key Points
- 2. Random Experiments
- 3. Probability Space

Key Points

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
 - Models knowledge about uncertainty
 - Optimizes use of knowledge to make decisions

The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability:

Precise, unambiguous, simple(!) way to reason about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.

Random Experiment: Flip one Fair Coin

Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)
- ▶ Likelihoods: *H*: 50% and *T*: 50%

Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

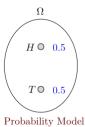
Two interpretations:

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!

Random Experiment: Flip one Fair Coin

Flip a fair coin: model

Physical Experiment



- ► The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - ▶ A set Ω of outcomes: $Ω = {H, T}$.
 - A probability assigned to each outcome: Pr[H] = 0.5, Pr[T] = 0.5.

Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

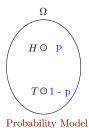
Flip many times \Rightarrow Fraction 1 - p of tails

- Question: How can one figure out p? Flip many times
- Tautology? No: Statistical regularity!

Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model

 ${\bf Physical\ Experiment}$



Flip Two Fair Coins

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- Note: $A \times B := \{(a,b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- Likelihoods: 1/4 each.

Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: {HT, TH}.
- ► Likelihoods: *HT* : 0.5, *TH* : 0.5.
- ▶ Note: Coins are glued so that they show different faces.

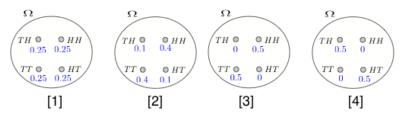
Flip two Attached Coins

Flips two coins attached by a spring:

- ► Possible outcomes: {*HH*, *HT*, *TH*, *TT*}.
- Likelihoods: *HH* : 0.4, *HT* : 0.1, *TH* : 0.1, *TT* : 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.

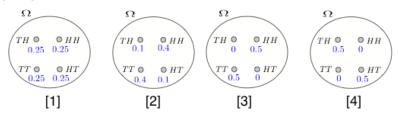
Flipping Two Coins

Here is a way to summarize the four random experiments:



- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- ▶ The probabilities are \geq 0 and add up to 1;
- ► Fair coins: [1]; Glued coins: [3], [4]; Spring-attached coins: [2];

Flipping Two Coins



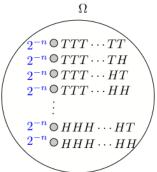
Important remarks:

- Each outcome describes the two coins.
- ▶ E.g., *HT* is one outcome of each of the above experiments.
- ▶ Wrong to think that outcomes are {*H*, *T*} and that one picks twice from that set.
- ► Indeed, this viewpoint misses the relationship between the two flips.
- ▶ Each ω ∈ Ω describes one outcome of the complete experiment.
- Ω and the probabilities specify the random experiment.

Flipping *n* times

Flip a fair coin n times (some $n \ge 1$):

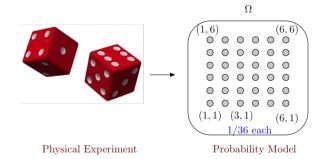
- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}. |A^n| = |A|^n$.
- ► Likelihoods: 1/2ⁿ each.



Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes: $\{1,2,3,4,5,6\}^2 = \{(a,b) \mid 1 \le a,b \le 6\}.$
- Likelihoods: 1/36 for each.



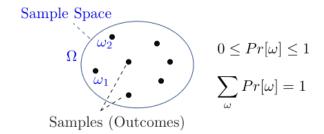
Probability Space.

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
 - (c) $\Omega = \{ \underbrace{A \spadesuit A \lozenge A \clubsuit A \heartsuit K \spadesuit}_{52}, \underbrace{A \spadesuit A \lozenge A \clubsuit A \heartsuit Q \spadesuit}_{52}, \ldots \}$ $|\Omega| = {52 \choose 5}.$
- 3. Assign a probability to each outcome: $Pr: \Omega \to [0,1]$.
 - (a) Pr[H] = p, Pr[T] = 1 p for some $p \in [0, 1]$
 - (b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
 - (c) $Pr[\underline{A \spadesuit A \diamondsuit A \clubsuit A \heartsuit K \spadesuit}] = \cdots = 1/\binom{52}{5}$

Probability Space: formalism.

 Ω is the **sample space.** $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

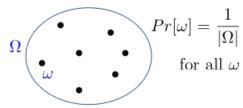
- ▶ $0 \le Pr[\omega] \le 1$;



Probability Space: Formalism.

In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space

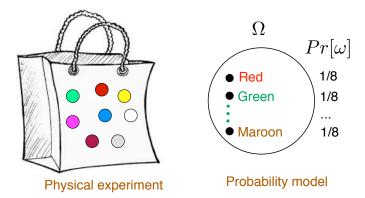


Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- Flipping a biased coin is not a uniform probability space.

Probability Space: Formalism

Simplest physical model of a uniform probability space:



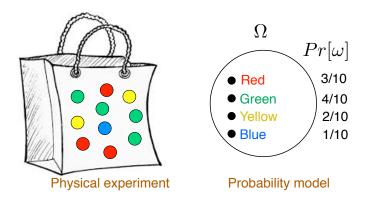
A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

$$\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \}$$

$$Pr[\text{blue}] = \frac{1}{8}.$$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:



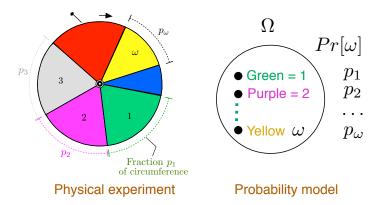
$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

Note: Probabilities are restricted to rational numbers: $\frac{N_k}{N}$.

Probability Space: Formalism

Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

$$\Omega = \{1, 2, 3, \dots, N\}, Pr[\omega] = p_{\omega}.$$

An important remark

- The random experiment selects one and only one outcome in Ω.
- ► For instance, when we flip a fair coin twice
 - $\triangleright \Omega = \{HH, TH, HT, TT\}$
 - The experiment selects *one* of the elements of Ω.
- In this case, its wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- ► For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets *HH* or *TT* with probability 50% each. This is not captured by 'picking two outcomes.'

Summary of Probability Basics

Modeling Uncertainty: Probability Space

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0,1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.

Onwards in Probability.

Events, Conditional Probability, Independence, Bayes' Rule

CS70: On to Events.

Events, Conditional Probability, Independence, Bayes' Rule

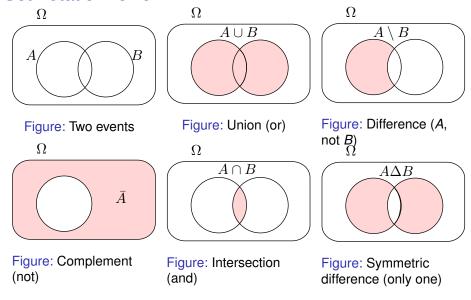
Today: Events.

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω. $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - **Probability:** Pr[ω] for all ω ∈ Ω. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 < Pr[\omega] < 1$.
 - 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

Set notation review



Probability of exactly one 'heads' in two coin flips?

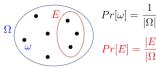
Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': HT, TH.

This leads to a definition!

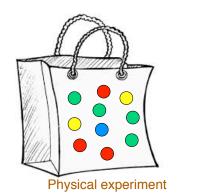
Definition:

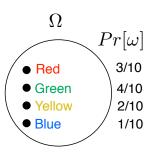
- ▶ An **event**, E, is a subset of outcomes: $E \subset \Omega$.
- ▶ The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

Uniform Probability Space



Event: Example





Probability model

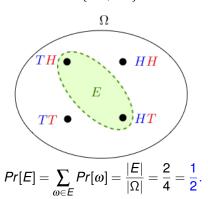
$$\begin{split} &\Omega = \{\text{Red, Green, Yellow, Blue}\} \\ &\textit{Pr}[\text{Red}] = \frac{3}{10}, \textit{Pr}[\text{Green}] = \frac{4}{10}, \text{ etc.} \end{split}$$

$$E = \{Red, Green\} \Rightarrow Pr[E] = \frac{3+4}{10} = \frac{3}{10} + \frac{4}{10} = Pr[Red] + Pr[Green].$$

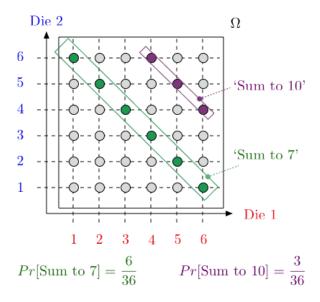
Probability of exactly one heads in two coin flips?

Sample Space, $\Omega = \{HH, HT, TH, TT\}.$

Uniform probability space: $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$. Event, *E*, "exactly one heads": {TH, HT}.



Roll a red and a blue die.



Example and Polls: 20 coin tosses.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$$

What is more likely?

(B)
$$\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$$
?

What is more likely?

- (A) (E_1) Twenty Hs out of twenty, or
- (B) (E₂) Ten Hs out of twenty?

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- ► What is more likely?
 - (E₁) Twenty Hs out of twenty, or
 - (E_2) Ten Hs out of twenty?

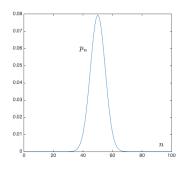
Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow Pr[E_1] = \frac{1}{|\Omega|} \ll Pr[E_2] = \frac{|E_2|}{|\Omega|}$.

$$|E_2| = {20 \choose 10} = 184,756.$$

Probability of *n* heads in 100 coin tosses.

$$\Omega = \{H, T\}^{100}; |\Omega| = 2^{100}.$$



Event
$$E_n = n$$
 heads'; $|E_n| = \binom{100}{n}$

$$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$$

Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}$.

$$|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|?

Poll: (A) 100⁵0

(B) 2^50 ,

(C) $\binom{50}{100}$ (D) $\binom{100}{50}$

(E) IDK - TBH.

Choose 50 positions out of 100 to be heads.

$$|E| = \binom{100}{50}$$
.

$$Pr[E] = \frac{\binom{100}{50}}{2^{100}}.$$

Calculation.

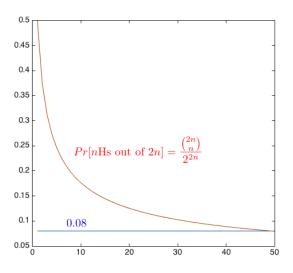
Stirling formula (for large *n*):

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n} (2n/e)^{2n}}{[\sqrt{2\pi n} (n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.$$

Exactly 50 heads in 100 coin tosses.



Summary.

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0,1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.
- **4**. Event: "subset of outcomes." $A \subseteq \Omega$. $Pr[A] = \sum_{w \in A} Pr[ω]$
- 5. Some calculations.