
Today

Finish Euclid.

Bijection/CRT/Isomorphism.

Fermat’s Little Theorem.
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Greatest Common Divisor and Inverses.
Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ :
Claim: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.

=⇒ One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then ∃a,b ∈ {0, . . . ,m−1}, a 6= b, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.
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Proof review. Consequence.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...

S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}
reducing (mod 6)

S = {0,4,2,0,4,2}
Not distinct. Common factor 2. Can’t be 1. No inverse.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).
(Hmm. What normal number is it own multiplicative inverse?) 1 -1.

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.
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Proof Review 2: Bijections.

If gcd(x,m) = 1.
Then the function f (a) = xa mod m is a bijection.
One to one: there is a unique pre-image.
Onto: the sizes of the domain and co-domain are the same.

x = 3,m = 4.
f (1) = 3(1) = 3 (mod 4), f (2) = 6 = 2 (mod 4), f (3) = 1 (mod 3).
Oh yeah. f (0) = 0.

Bijection ≡ unique pre-image and same size.
All the images are distinct. =⇒ unique pre-image for any image.

x = 2,m = 4.
f (1) = 2, f (2) = 0, f (3) = 2

Oh yeah. f (0) = 0.

Not a bijection.

4 / 33

Poll

Which is bijection?
(A) f (x) = x for domain and range being R
(B) f (x) = ax (mod ()n) for x ∈ {0, ...,n−1} and gcd(a,n) = 2
(C) f (x) = ax (mod n) for x ∈ {0, ...,n−1} and gcd(a,n) = 1

(B) is not.
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Only if

Thm: If gcd(x ,m) 6= 1 then x has no multiplicative inverse modulo m.

Assume a is x−1, or ax = 1+km.

x = nd and m = `d for d > 1.

Thus,

a(nd) = 1+k`d or d(na−k`) = 1.

But d > 1 and n = (na−k`) ∈ Z.

so dn 6= 1 and dn = 1. Contradiction.
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Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x ,m).
Greater than 1? No multiplicative inverse.
Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.
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More divisibility
Notation: d |x means “d divides x” or

x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).

Proof:
mod (x ,y) = x−bx/yc ·y

= x−bsc ·y for integer s
= kd −s`d for integers k , ` where x = kd and y = `d
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. ish.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma 1 and 2.
Same common divisors =⇒ largest is the same.
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Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

Hey, what’s gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What’s gcd(x ,0)? x

(define (euclid x y)
(if (= y 0)
x
(euclid y (mod x y)))) ***

Theorem: (euclid x y) = gcd(x ,y) if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.
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Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x
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Euclid procedure is fast.

Theorem: (euclid x y) uses 2n ”divisions” where n = b(x)≈ log2 x .

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

If y ≈ x roughly y uses n bits ...
2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.
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Poll.

Assume log2 1,000,000 is 20 to the nearest integer.
Mark what’s true.

(A) The size of 1,000,000 is 20 bits.
(B) The size of 1,000,000 is one million.
(C) The value of 1,000,000 is one million.
(D) The value of 1,000,000 is 20.

(A) and (C).
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Poll

Which are correct?

(A) gcd(700,568) = gcd (568,132)
(B) gcd(8,3) = gcd(3,2)
(C) gcd(8,3) = 1
(D) gcd(4,0) = 4
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Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“(gcd x y)” at work.

euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)

euclid(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)
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Runtime Proof.

(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Theorem: (euclid x y) uses O(n) ”divisions” where n = b(x).

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.
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Runtime Proof (continued.)
(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Fact:
First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y ≥ x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y ≥ x/2, then

b x
y c= 1,

mod (x ,y) = x−yb x
y c= x−y≤x−x/2 = x/2
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Poll

Mark correct answers.
Note: Mod(x,y) is the remainder of x divided by y.

(A) mod (x ,y)< y
(B) If euclid(x,y) calls euclid(u,v) calls euclid (a,b) then a <= x/2.
(C) euclid(x,y) calls euclid (u,v) means u = y.
(D) if y > x/2,mod(x ,y)< y/2
(E) if y > x/2,mod(x ,y) = (y −x)

(D) is not always true.
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Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend euclid to find inverse.
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Euclid’s GCD algorithm.

(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Computes the gcd(x ,y) in O(n) divisions. (Remember n = log2 x .)

For x and m, if gcd(x ,m) = 1 then x has an inverse modulo m.
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Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?
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Extended GCD
Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x (mod m)!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Check: 3(12) = 36 = 1 (mod 35).
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Make d out of multiples of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11= 12− (1)(35− (2)12)= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.
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Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b = 1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12
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Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(a,b) and

d = ax +by .
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Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d ,a,b) with

d = ay +b( mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = ay +b · ( mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.
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Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y) =⇒ d = bx− (a−b x

y cb)y
Returns (d ,b,(a−b x

y c ·b)).
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Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.
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Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(10000000000000000000000000000000000000000000)5 divisions.

Internet Security: Soon.
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Bijections

Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A = B = reals.
Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

When is it a bijection?
When gcd(a,m) is ....? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).
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Lots of Mods

x = 5 (mod 7) and x = 3 (mod 5).

What is x (mod 35)?

Let’s try 5. Not 3 (mod 5)!
Let’s try 3. Not 5 (mod 7)!

If x = 5 (mod 7)
then x is in {5,12,19,26,33}.

Oh, only 33 is 3 (mod 5).
Hmmm... only one solution.

A bit slow for large values.
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Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.
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Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x−y)≡ 0 (mod m) and (x−y)≡ 0 (mod n).
=⇒ (x−y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x−y)

=⇒ x−y ≥mn =⇒ x ,y 6∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.
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Poll.

My love is won,
Zero and one.
Nothing and nothing done.

What is the rhyme saying?

(A) Multiplying by 1, gives back number. (Does nothing.)
(B) Adding 0 gives back number. (Does nothing.)
(C) Rao has gone mad.
(D) Multiplying by 0, gives 0.
(E) Adding one does, not too much.

All are (maybe) correct.
(E) doesn’t have to do with the rhyme.
(C) Recall Polonius:

“Though this be madness, yet there is method in ’t.”
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CRT:isomorphism.

For m,n, gcd(m,n) = 1.

x mod mn↔ x = a mod m and x = b mod n
y mod mn↔ y = c mod m and y = d mod n

Also, true that x +y mod mn↔ a+c mod m and b+d mod n.

Mapping is “isomorphic”:
corresponding addition (and multiplication) operations consistent with
mapping.
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Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.
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Poll

Which was used in Fermat’s theorem proof?

(A) The mapping f (x) = ax mod p is a bijection.
(B) Multiplying a number by 1, gives the number.
(C) All nonzero numbers mod p, have an inverse.
(D) Multiplying a number by 0 gives 0.
(E) Mutliplying elements of sets A and B together is the same if A = B.

(A), (C), and (E)
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Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

What is 2101 (mod 7)?

Wrong: 2101 = 27∗14+3 = 23 (mod 7)

Fermat: 2 is relatively prime to 7. =⇒ 26 = 1 (mod 7).

Correct: 2101 = 26∗16+5 = 25 = 32 = 4 (mod 7).

For a prime modulus, we can reduce exponents modulo p−1!
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Lecture in a minute.

Euclid’s Alg: gcd(x ,y) = gcd(y ,x mod y)
Fast cuz value drops by a factor of two every two recursive calls.

Extended Euclid: Find a,b where ax +by = gcd(x ,y).
Idea: compute a,b recursively (euclid), or iteratively.

Inverse: ax +by = ax = gcd(x ,y) mod y .
If gcd(x ,y) = 1, we have ax = 1 mod y
→ a = x−1mody .

Chinese Remainder Theorem:
If gcd(n,m) = 1, x = a (mod n),x = b (mod m) unique sol.

Proof: Find u = 1 (mod n), u = 0 (mod m),
and v = 0 (mod n), v = 1 (mod m).

Then: x = au+bv = a (mod n)...
u = m(m−1 (mod n)) (mod n) works!

Fermat: Prime p, ap−1 = 1 (mod p).
Proof Idea: f (x) = a(x) (mod p): bijection on S = {1, . . . ,p−1}.
Product of elts == for range/domain: ap−1 factor in range.

38 / 33


