1. Isoperimetric inequality for hypercube.

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic.

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!

- 1. Isoperimetric inequality for hypercube.
- Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor.

- 1. Isoperimetric inequality for hypercube.
- Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!

- 1. Isoperimetric inequality for hypercube.
- Modular Arithmetic. Clock Math!!!
- Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 4. Euclid's GCD Algorithm.

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor.
 Division!!!
- Euclid's GCD Algorithm. A little tricky here!

For 3-space:

For 3-space:

The sphere minimizes surface area to volume.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Trans 0(4 /11/1)

Tree: $\Theta(1/|V|)$.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree: $\Theta(1/|V|)$.

Hypercube: $\Theta(1)$.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree: $\Theta(1/|V|)$.

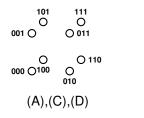
Hypercube: $\Theta(1)$.

Surface Area is roughly at least the volume!

A 0-dimensional hypercube is a node labelled with the empty string of bits.

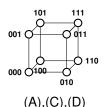
A 0-dimensional hypercube is a node labelled with the empty string of bits.

A 0-dimensional hypercube is a node labelled with the empty string of bits.



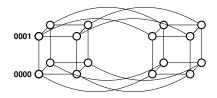
- (A) Lower left forward node name is 0000
- (B) Lower left back node name is 0001
- (C) Upper right forward node is 1011
- (D) Upper right back node name is 1111

A 0-dimensional hypercube is a node labelled with the empty string of bits.

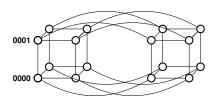


- (A) Lower left forward node name is 0000
- (B) Lower left back node name is 0001
- (C) Upper right forward node is 1011
- (D) Upper right back node name is 1111

A 0-dimensional hypercube is a node labelled with the empty string of bits.

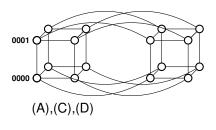


A 0-dimensional hypercube is a node labelled with the empty string of bits.



- (A) Lower left forward node name is 0000
- (B) Lower left back node name is 0001
- (C) Upper right forward node is 1011
- (D) Upper right back node name is 1111

A 0-dimensional hypercube is a node labelled with the empty string of bits.



- (A) Lower left forward node name is 0000
- (B) Lower left back node name is 0001
- (C) Upper right forward node is 1011
- (D) Upper right back node name is 1111

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S;

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

(S, V - S) is cut.

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

(S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

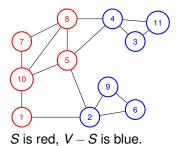
(S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges.

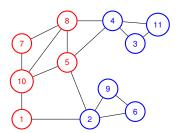
Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

$$(S, V - S)$$
 is cut.
 $(E \cap S \times (V - S))$ - cut edges.

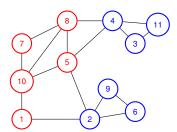
Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.





S is red, V - S is blue.

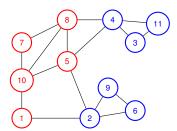
What is size of cut?



S is red, V - S is blue.

What is size of cut?

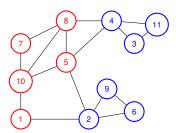
Number of edges between red and blue.



S is red, V - S is blue.

What is size of cut?

Number of edges between red and blue. 4.



S is red, V - S is blue.

What is size of cut?

Number of edges between red and blue. 4.

Hypercube: any cut that cuts off x nodes has $\ge x$ edges.

Proof of Large Cuts.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: n = 1

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}$.

 $S = \{0\}$ has one edge leaving.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}$.

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}$.

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}$.

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

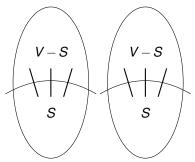
Case 1: Count edges inside subcube inductively.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

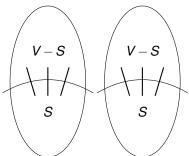


Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



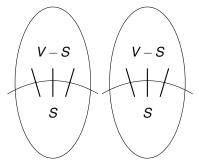
Case 2: Count inside and across.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

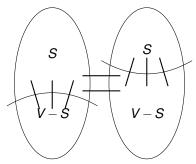
Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



Case 2: Count inside and across.



Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Recursive definition:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them. $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_X that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$ Both S_0 and S_1 are small sides.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

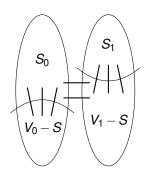
Edges cut in $H_1 \geq |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

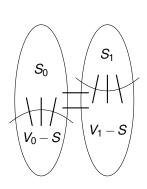
Proof: Induction Step. Case 2.

 $|\mathcal{S}_0| \geq |\mathit{V}_0|/2.$



Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

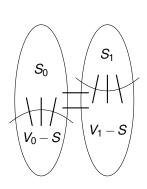
Proof: Induction Step. Case 2.



 $|S_0| \ge |V_0|/2.$ Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

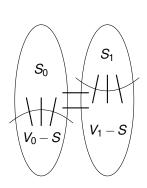
Proof: Induction Step. Case 2.



 $|S_0| \ge |V_0|/2.$ Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2.$ $\implies \ge |S_1|$ edges cut in E_1 .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

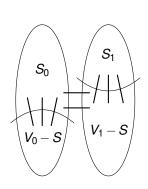
Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \end{split}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

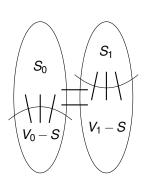
Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

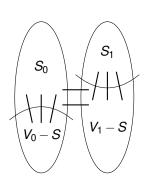
Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ &\text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \\ &\text{Edges in } E_x \text{ connect corresponding nodes.} \end{split}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



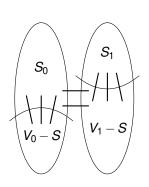
$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes.

 \implies = $|S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

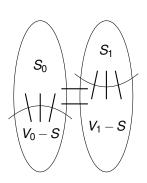


$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



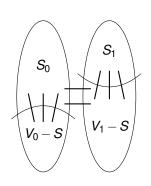
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

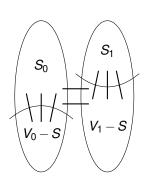
Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

 \geq

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



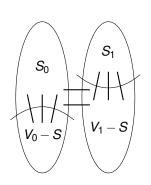
$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



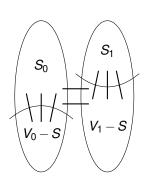
$$|S_0| \ge |V_0|/2.$$
 Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2.$ $\implies \ge |S_1|$ edges cut in E_1 . $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$ $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



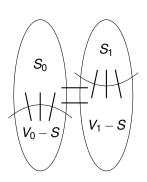
$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



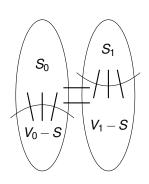
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\Rightarrow |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



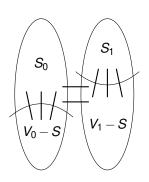
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\Rightarrow |S_0| - |S_1|$ edges cut in E_x .

$$\geq \frac{|S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|}{|V_0|}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



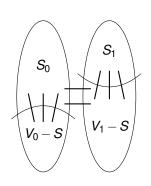
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\Rightarrow = |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \\ |V_0| = |V|/2 \geq |S|.$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



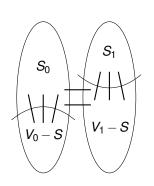
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\Rightarrow = |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \\ |V_0| = |V|/2 \geq |S|.$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .

$$|S_0| \ge |V_0|/2 \Longrightarrow |V_0 - S| \le |V_0|/2$$

 $\Longrightarrow \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\Rightarrow |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \ |V_0| = |V|/2 \geq |S|.$$

Also, case 3 where $|S_1| \ge |V|/2$ is symmetric.

Hypercube proof: poll

Hypercube has large cuts proof uses these ideas:

- (A) If cuts are same size on two sides it works by induction.
- (B) Uses the fact that it is planar.
- (C) Recursive definition of hypercube.
- (D) If different size, can count edges between to subcubes.
- (E) Applies Euler's formula.

Hypercube proof: poll

Hypercube has large cuts proof uses these ideas:

- (A) If cuts are same size on two sides it works by induction.
- (B) Uses the fact that it is planar.
- (C) Recursive definition of hypercube.
- (D) If different size, can count edges between to subcubes.
- (E) Applies Euler's formula.
- (A),(D), and (E).

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

Central object of study.

Modular Arithmetic.

Applications: cryptography, error correction.

Theorem: If d|x and d|y, then d|(y-x).

Theorem: If d|x and d|y, then d|(y-x).

Proof:

Theorem: If d|x and d|y, then d|(y-x).

Proof:

x = ad, y = bd,

Theorem: If d|x and d|y, then d|(y-x).

Proof:

$$x = ad$$
, $y = bd$,
 $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y)$.

13/34

Theorem: If d|x and d|y, then d|(y-x).

Proof:

$$x = ad$$
, $y = bd$,
 $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y)$.

Theorem: Every number $n \ge 2$ can be represented as a product of primes.

13/34

Theorem: If d|x and d|y, then d|(y-x).

Proof:

$$x = ad$$
, $y = bd$,
 $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y)$.

Theorem: Every number $n \ge 2$ can be represented as a product of primes.

Proof: Either prime, or $n = a \times b$, and use strong induction. (Uniqueness? Later.)

Poll

What did we use in our proofs of key ideas?

- (A) Distributive Property of multiplication over addition.
- (B) Euler's formula.
- (C) The definition of a prime number.
- (D) Euclid's Lemma.

Poll

What did we use in our proofs of key ideas?

- (A) Distributive Property of multiplication over addition.
- (B) Euler's formula.
- (C) The definition of a prime number.
- (D) Euclid's Lemma.
- (A) and (C)

Next Up.

Modular Arithmetic.

If it is 1:00 now.

If it is 1:00 now.
What time is it in 2 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5$.

5 is the same as 101 for a 12 hour clock system.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5$.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5$.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, ..., 11\}$

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12,1,\ldots,11\}$ (Almost remainder, except for 12 and 0 are equivalent.)

This is Thursday is September 16, 2021.

This is Thursday is September 16, 2021. What day is it a year from then?

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

Number days.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then

This is Thursday is September 16, 2021.
What day is it a year from then? on September 16, 2022?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4+1
two days are equivalent up to addition/subtraction of multiple of 7.

This is Thursday is September 16, 2021.
What day is it a year from then? on September 16, 2022?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4+1
two days are equivalent up to addition/subtraction of multiple of 7.
11 days from then is day 1

This is Thursday is September 16, 2021.
What day is it a year from then? on September 16, 2022?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4+1
two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then is day 1 which is Monday!

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then is day 1 which is Monday!

What day is it a year from then?

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then? Next year is not a leap year.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7.
11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+365 or day 369.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+365 or day 369.

Smallest representation:

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+365 or day 369.

Smallest representation:

subtract 7 until smaller than 7.

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369. Smallest representation: subtract 7 until smaller than 7. divide and get remainder.

```
This is Thursday is September 16, 2021.
 What day is it a year from then? on September 16, 2022?
   Number days.
    0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
 5 days from then. day 9 or day 2 or Tuesday.
 25 days from then. day 29 or day 1. 29 = (7)4 + 1
   two days are equivalent up to addition/subtraction of multiple of 7.
   11 days from then is day 1 which is Monday!
What day is it a year from then?
 Next year is not a leap year. So 365 days from then.
 Day 4+365 or day 369.
Smallest representation:
 subtract 7 until smaller than 7.
 divide and get remainder.
 369/7
```

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 369/7 leaves quotient of 52 and remainder 5.

```
This is Thursday is September 16, 2021.
 What day is it a year from then? on September 16, 2022?
   Number days.
    0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
 5 days from then. day 9 or day 2 or Tuesday.
 25 days from then. day 29 or day 1. 29 = (7)4 + 1
   two days are equivalent up to addition/subtraction of multiple of 7.
   11 days from then is day 1 which is Monday!
What day is it a year from then?
 Next year is not a leap year. So 365 days from then.
 Day 4+365 or day 369.
Smallest representation:
 subtract 7 until smaller than 7.
 divide and get remainder.
 369/7 leaves quotient of 52 and remainder 5. 369 = 7(52) + 5
```

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 369/7 leaves quotient of 52 and remainder 5. 369 = 7(52) + 5or September 16, 2022 is a Friday.

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 369/7 leaves quotient of 52 and remainder 5. 369 = 7(52) + 5or September 16, 2022 is a Friday.

80 years?

80 years? 20 leap years.

80 years? 20 leap years. 366×20 days

80 years? 20 leap years. 366×20 days 60 regular years.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4 + 366 \times 20 + 365 \times 60$.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4+366 \times 20+365 \times 60$. Equivalent to?

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to? Hmm.
```

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to? Hmm.
```

What is remainder of 366 when dividing by 7?

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7?

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60$

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4+2\times 20+1\times 60=104$ Remainder when dividing by 7?

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4+2\times 20+1\times 60=104$ Remainder when dividing by 7? $104=14\times 7$

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by $7?\ 52 \times 7 + 2$. What is remainder of 365 when dividing by $7?\ 1$ Today is day 4.

Get Day: $4+2\times 20+1\times 60=104$ Remainder when dividing by 7? $104=14\times 7+6$.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by $7?\ 52 \times 7 + 2$. What is remainder of 365 when dividing by $7?\ 1$ Today is day 4.

Get Day: $4+2\times20+1\times60=104$ Remainder when dividing by 7? $104=14\times7+6$. Or February 11, 2101 is Saturday!

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or February 11, 2101 is Saturday!

Further Simplify Calculation:

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4.

It is day $4+366\times20+365\times60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7?

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $4 + 2 \times 6 + 1 \times 4 = 20$.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $4 + 2 \times 6 + 1 \times 4 = 20$.

Or Day 6.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $4 + 2 \times 6 + 1 \times 4 = 20$.

Or Day 6. September 16, 2101 is Saturday.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7?

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $4 + 2 \times 6 + 1 \times 4 = 20$.

Or Day 6. September 16, 2101 is Saturday.

"Reduce" at any time in calculation!

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence classes: \{\dots, -7, 0, 7, 14, \dots\}
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x-y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence classes: \{\ldots, -7, 0, 7, 14, \ldots\} \{\ldots, -6, 1, 8, 15, \ldots\}
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence classes: \{\dots, -7, 0, 7, 14, \dots\} \{\dots, -6, 1, 8, 15, \dots\} ...
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

Mod 7 equivalence classes: $\{..., -7, 0, 7, 14, ...\}$ $\{..., -6, 1, 8, 15, ...\}$...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a + b \equiv c + d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\}$$
 $\{\ldots, -6, 1, 8, 15, \ldots\}$...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ... or x and y have the same remainder w.r.t. m. ... or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore,

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ... or x and y have the same remainder w.r.t. m. ... or x = y + km for some integer k.
```

Mod 7 equivalence classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ... or x and y have the same remainder w.r.t. m. ... or x = y + km for some integer k.
```

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\}$$
 $\{\ldots, -6, 1, 8, 15, \ldots\}$...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\}$$
 $\{\ldots, -6, 1, 8, 15, \ldots\}$...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

Can calculate with representative in $\{0, ..., m-1\}$.

 $x \pmod{m}$ or $\mod(x, m)$

```
x \pmod{m} or \mod(x, m)
- remainder of x divided by m in \{0, \dots, m-1\}.
```

```
x \pmod{m} or \mod(x, m)
- remainder of x divided by m in \{0, \dots, m-1\}.
```

```
x \pmod m \text{ or } \mod (x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod (x,m) = x - \lfloor \frac{x}{m} \rfloor m
```

```
x \pmod m or \mod (x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod (x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.}
```

```
x \pmod m or \mod (x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod (x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod (29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12
```

```
x \pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12
```

```
x \pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4
```

```
x \pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 29 = 29
```

```
x \pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{X} = 5 Work in this system.
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}.  \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m   \lfloor \frac{x}{m} \rfloor \text{ is quotient.}   \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 29 = 5  Work in this system.  a \equiv b \pmod{m}.
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}.  \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m   \lfloor \frac{x}{m} \rfloor \text{ is quotient.}   \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{x} = 5  Work in this system. a \equiv b \pmod{m}. Says two integers a and b are equivalent modulo m.
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
 \text{mod}(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
 \text{mod}(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 ≡
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
 \text{mod}(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
  mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 =
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
```

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$.

6 = 3 + 3 = 3 + 10

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
```

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$. $6 = 3 + 3 = 3 + 10 \pmod{7}$.

Notation

$$x\pmod{m}$$
 or $\mod(x,m)$ remainder of x divided by m in $\{0,\ldots,m-1\}$. $\mod(x,m)=x-\lfloor\frac{x}{m}\rfloor m$ $\lfloor\frac{x}{m}\rfloor$ is quotient. $\mod(29,12)=29-(\lfloor\frac{29}{12}\rfloor)\times 12=29-(2)\times 12=\cancel{4}=5$ Work in this system. $a\equiv b\pmod{m}$. Says two integers a and b are equivalent modulo m . $\mod 10$ $\mod 1$

Notation

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 \pmod{7} = 13 \pmod{7}.
 But probably won't take off points.
```

Notation

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
 \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 \pmod{7} = 13 \pmod{7}.
 But probably won't take off points, still hard for us to read.
```

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1;

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m \le 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

$$2\cdot 4x = 2\cdot 5 \pmod 7$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

$$2\cdot 4x = 2\cdot 5 \ (\text{mod } 7)$$

$$8x = 10 \pmod{7}$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m > 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

$$2 \cdot 4x = 2 \cdot 5 \pmod{7}$$

8x = 10 (mod 7)

$$6x = 10 \pmod{7}$$

$$x = 3 \pmod{7}$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$2 \cdot 4x = 2 \cdot 5 \pmod{7}$$

8x = 10 (mod 7)

$$x = 3 \pmod{7}$$

Check!

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$2\cdot 4x = 2\cdot 5 \pmod{7}$$

$$8x = 10 \pmod{7}$$

$$x=3 \pmod{7}$$

Check! $4(3) = 12 = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m > 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod m > 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4"

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4" \Longrightarrow

 $8k-12\ell$ is a multiple of four for any ℓ and $k \implies$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4" \Longrightarrow

 $8k - 12\ell$ is a multiple of four for any ℓ and $k \implies 8k \not\equiv 1 \pmod{12}$ for any k.

Poll

Mark true statements.

- (A) Mutliplicative inverse of 2 mod 5 is 3 mod 5.
- (B) The multiplicative inverse of $((n-1) \pmod{n} = ((n-1) \pmod{n})$.
- (C) Multiplicative inverse of 2 mod 5 is 0.5.
- (D) Multiplicative inverse of $4 = -1 \pmod{5}$.
- (E) (-1)x(-1) = 1. Woohoo.
- (F) Multiplicative inverse of 4 mod 5 is 4 mod 5.

Poll

Mark true statements.

- (A) Mutliplicative inverse of 2 mod 5 is 3 mod 5.
- (B) The multiplicative inverse of $((n-1) \pmod{n} = ((n-1) \pmod{n})$.
- (C) Multiplicative inverse of 2 mod 5 is 0.5.
- (D) Multiplicative inverse of $4 = -1 \pmod{5}$.
- (E) (-1)x(-1) = 1. Woohoo.
- (F) Multiplicative inverse of 4 mod 5 is 4 mod 5.
- (C) is false. 0.5 has no meaning in arithmetic modulo 5.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

 \implies One must correspond to 1 modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim:

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$,

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of m and x do not contain common primes.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x, m) = 1$$

 \implies Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in *m*'s factorization.

So (a-b) has to be multiple of m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in *m*'s factorization.

So (a-b) has to be multiple of m.

$$\implies (a-b) \geq m$$
.

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

So (a-b) has to be multiple of m.

$$\implies$$
 $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$.

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in *m*'s factorization.

So (a-b) has to be multiple of m.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$. Contradiction.

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in *m*'s factorization.

So (a-b) has to be multiple of m.

$$\implies$$
 $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$. Contradiction.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

...

For x = 4 and m = 6. All products of 4...

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

••

For x = 4 and m = 6. All products of 4...

S =

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m.
```

• • •

For
$$x = 4$$
 and $m = 6$. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m.
```

For x = 4 and m = 6. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m. ...
```

```
For x=4 and m=6. All products of 4... S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\} reducing (mod 6) S=\{0,4,2,0,4,2\}
```

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m. ...
```

```
For x=4 and m=6. All products of 4... S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\} reducing (mod 6) S=\{0,4,2,0,4,2\}
```

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m.
```

```
For x=4 and m=6. All products of 4... S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\} reducing (mod 6) S=\{0,4,2,0,4,2\} Not distinct.
```

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For x = 4 and m = 6. All products of 4...

 $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

 $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2. Can't be 1.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- - -

For x = 4 and m = 6. All products of 4...

 $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- - -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$S =$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$\mathcal{S} = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$\mathcal{S} = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct,

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1!

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

٠.

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ?

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$
 No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

 $4x = 2 \pmod{6}$ Two solutions!

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$
 No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$
 Two solutions! $x = 2,5 \pmod{6}$

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0, 4, 2, 0, 4, 2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$
 Two solutions! $x = 2.5 \pmod{6}$

Very different for elements with inverses.

If gcd(x,m) = 1.

```
If gcd(x,m) = 1.
Then the function f(a) = xa \mod m is a bijection.
```

```
If gcd(x,m) = 1.
Then the function f(a) = xa \mod m is a bijection.
One to one: there is a unique pre-image.
```

If gcd(x,m) = 1. Then the function $f(a) = xa \mod m$ is a bijection. One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

```
If gcd(x,m) = 1.
Then the function f(a) = xa \mod m is a bijection.
One to one: there is a unique pre-image.
Onto: the sizes of the domain and co-domain are the same.
```

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4},$

```
If gcd(x,m) = 1.
Then the function f(a) = xa \mod m is a bijection.
```

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4},$

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$$

```
If gcd(x,m) = 1.

Then the function f(a) = xa \mod m is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3 \mod 4
```

If gcd(x,m) = 1.

Oh yeah. f(0) = 0.

```
Then the function f(a) = xa \mod m is a bijection.
One to one: there is a unique pre-image.
Onto: the sizes of the domain and co-domain are the same.
x = 3, m = 4.
f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.
```

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$
Oh yeah. $f(0) = 0$.

Bijection

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ Oh yeah. f(0) = 0.

 $\mbox{Bijection} \equiv \mbox{unique pre-image and same size}.$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$$
 Oh yeah. $f(0) = 0$.

 $\label{eq:bijection} \mbox{Bijection} \equiv \mbox{unique pre-image and same size}.$

$$x = 2, m = 4.$$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

$$x = 2, m = 4.$$

$$f(1) = 2, f(2) = 0, f(3) = 2$$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

$$x = 2, m = 4.$$

$$f(1) = 2, f(2) = 0, f(3) = 2$$

Oh yeah.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$$
 Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

$$x = 2, m = 4.$$

$$f(1) = 2, f(2) = 0, f(3) = 2$$

Oh yeah. $f(0) = 0$.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$$
 Oh yeah. $f(0) = 0$.

 $\label{eq:bijection} \mbox{Bijection} \equiv \mbox{unique pre-image and same size}.$

All the images are distinct. \implies unique pre-image for any image.

$$x = 2, m = 4.$$

$$f(1) = 2, f(2) = 0, f(3) = 2$$

Oh yeah. $f(0) = 0$.

Not a bijection.

Poll

Which is bijection?

- (A) f(x) = x for domain and range being \mathbb{R}
- (B) $f(x) = ax \pmod{(n)}$ for $x \in \{0, ..., n-1\}$ and gcd(a, n) = 2
- (C) $f(x) = ax \pmod{n}$ for $x \in \{0, ..., n-1\}$ and gcd(a, n) = 1

Poll

Which is bijection?

- (A) f(x) = x for domain and range being \mathbb{R}
- (B) $f(x) = ax \pmod{(n)}$ for $x \in \{0, ..., n-1\}$ and gcd(a, n) = 2
- (C) $f(x) = ax \pmod{n}$ for $x \in \{0, ..., n-1\}$ and gcd(a, n) = 1
- (B) is not.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Thm: If $gcd(x,m) \neq 1$ then x has no multiplicative inverse modulo m. Assume a is x^{-1} , or ax = 1 + km.

Thm: If $gcd(x,m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thm: If $gcd(x,m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

$$a(nd) = 1 + k\ell d$$
 or $d(na - k\ell) = 1$.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

$$a(nd) = 1 + k\ell d$$
 or $d(na - k\ell) = 1$.

But d > 1 and $n = (na - k\ell) \in \mathbb{Z}$.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

$$a(nd) = 1 + k\ell d$$
 or $d(na - k\ell) = 1$.

But d > 1 and $n = (na - k\ell) \in \mathbb{Z}$.

so $dn \neq 1$ and dn = 1. Contradiction.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

$$a(nd) = 1 + k\ell d$$
 or $d(na - k\ell) = 1$.

But d > 1 and $n = (na - k\ell) \in \mathbb{Z}$.

so $dn \neq 1$ and dn = 1. Contradiction.

How to find the inverse?

How to find the inverse?

How to find if x has an inverse modulo m?

How to find the inverse? How to find if x has an inverse modulo m? Find gcd (x, m).

How to find the inverse? How to find if x has an inverse modulo m? Find gcd (x, m). Greater than 1?

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1?

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

How to find the inverse?

How to find **if** *x* has an inverse modulo *m*?

Find gcd(x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm:

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.

Next up.

Next up.

Next up.

Euclid's Algorithm.

Next up.

Euclid's Algorithm.

Runtime.

Next up.

Euclid's Algorithm.

Runtime.

Euclid's Extended Algorithm.

Does 2 have an inverse mod 8?

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x,m) > 1?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if

$$gcd(x, m) > 1$$
? No. $gcd(x, m) = 1$?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if acd(x,m) > 1? No.

$$gcd(x,m) = 1$$
? Yes.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Now what?: Compute gcd!

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x, m) > 1? No.

gcd(x,m) = 1? Yes.

Now what?:

Compute gcd!

Compute Inverse modulo *m*.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x, m) > 1? No.

gcd(x,m) = 1? Yes.

Now what?:

Compute gcd!

Compute Inverse modulo *m*.

Notation: d|x means "d divides x" or

Notation: d|x means "d divides x" or x = kd for some integer k.

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

$$\implies x - y = kd - \ell d$$

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or $x = \ell d$ and y = kd

$$\implies x - y = kd - \ell d = (k - \ell)d$$

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof:
$$d|x$$
 and $d|y$ or $x = \ell d$ and $y = kd$ $\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$

```
Notation: d|x means "d divides x" or x = kd for some integer k.
```

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof:
$$d|x$$
 and $d|y$ or $x = \ell d$ and $y = kd$

$$\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$$

Notation: d|x means "d divides x" or

Notation: d|x means "d divides x" or x = kd for some integer k.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

$$mod(x,y) = x - \lfloor x/y \rfloor \cdot y$$

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

$$mod(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d| \mod (x,y)$.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home. □ish.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d|\mod(x,y)$ then d|y and d|x. **Proof...:** Similar. Try this at home.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

□ish.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d|\mod(x,y)$ then d|y and d|x. **Proof...:** Similar. Try this at home.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Proof: x and y have **same** set of common divisors as x and mod (x, y) by Lemma 1 and 2.

□ish.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d|\mod(x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Proof: x and y have **same** set of common divisors as x and mod (x, y) by Lemma 1 and 2.

Same common divisors \implies largest is the same.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - \lfloor s \rfloor \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d|\mod(x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Proof: x and y have **same** set of common divisors as x and mod (x, y) by Lemma 1 and 2.

Same common divisors \implies largest is the same.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)?

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)?

```
GCD Mod Corollary: gcd(x,y) = gcd(y, mod(x,y)).
```

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
GCD Mod Corollary: gcd(x,y) = gcd(y, \mod(x,y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

What's gcd(x,0)? x

(define (euclid x y)

(if (= y 0)

x

(euclid y (mod x y)))) ***
```

```
GCD Mod Corollary: gcd(x,y) = gcd(y, \mod(x,y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

What's gcd(x,0)? x

(define (euclid x y)

(if (= y 0)

x

(euclid y (mod x y)))) ***

Theorem: (euclid x y) = gcd(x,y) if x > y.
```

```
GCD Mod Corollary: gcd(x,y) = gcd(y, \mod(x,y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x
```

```
(define (euclid x y)
  (if (= y 0)
    x
        (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction.

```
GCD Mod Corollary: gcd(x,y) = gcd(y, \mod(x,y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

What's gcd(x,0)? x

(define (euclid x y)

(if (= y 0)

x

(euclid y (mod x y)))) ***

Theorem: (euclid x y) = gcd(x,y) if x > y.
```

Theorem: (euclid x y) = gcd(x, y)

Proof: Use Strong Induction. **Base Case:** y = 0, "x divides y and x"

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
                 X
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
           \implies "x is common divisor and clearly largest."
```

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
                 X
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: v = 0, "x divides v and x"
           ⇒ "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
```

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
                  X
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: v = 0, "x divides v and x"
            \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
```

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
                 X
(define (euclid x y)
  (if (= y 0)
    X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x \ge y.
Proof: Use Strong Induction.
Base Case: v = 0, "x divides v and x"
```

 \implies "x is common divisor and clearly largest." Induction Step: $\mod(x,y) < y \le x$ when $x \ge y$

call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis

Euclid's algorithm.

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x \ge y.
Proof: Use Strong Induction.
Base Case: v = 0, "x divides v and x"
           ⇒ "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(y, mod(x, y))
```

Euclid's algorithm.

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x \ge y.
Proof: Use Strong Induction.
Base Case: v = 0, "x divides v and x"
            \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(y, mod(x, y))
which is gcd(x, y) by GCD Mod Corollary.
```

Euclid's algorithm.

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x \ge y.
Proof: Use Strong Induction.
Base Case: v = 0, "x divides v and x"
           ⇒ "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(y, mod(x, y))
which is gcd(x, y) by GCD Mod Corollary.
```

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

For $a \equiv b \pmod{N}$, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a+b=c+d \pmod{N}$.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

For $a \equiv b \pmod{N}$, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a+b=c+d \pmod{N}$.

Division?

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

For $a \equiv b \pmod{N}$, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a+b=c+d \pmod{N}$.

Division? Multiply by multiplicative inverse.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Why?

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Why? If: $f(x) = ax \pmod{N}$ is a bijection on $\{1, ..., N-1\}$.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Why? If: $f(x) = ax \pmod{N}$ is a bijection on $\{1, ..., N-1\}$. $ax - ay = 0 \pmod{N} \implies a(x - y)$ is a multiple of N.

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
```

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

```
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}. ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N. If gcd(a, N) = 1,
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If gcd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
```

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Why? If: $f(x) = ax \pmod{N}$ is a bijection on $\{1, ..., N-1\}$. $ax - ay = 0 \pmod{N} \implies a(x-y)$ is a multiple of N. If acd(a, N) = 1.

then (x - y) must contain all primes in prime factorization of N, and is therefore be bigger than N.

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If acd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = yd,
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If gcd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = vd.
   any ma + kN = d(mx - ky) or is a multiple of d.
 and is not 1.
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If acd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = vd.
   any ma + kN = d(mx - ky) or is a multiple of d.
 and is not 1.
Euclid's Alg: gcd(x, y) = gcd(y \mod x, x)
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If acd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = vd.
   any ma + kN = d(mx - ky) or is a multiple of d.
 and is not 1.
Euclid's Alg: gcd(x, y) = gcd(y \mod x, x)
```

Fast cuz value drops by a factor of two every two recursive calls.

34/34

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$.

If and only if gcd(a, N) = 1.

Why? If: $f(x) = ax \pmod{N}$ is a bijection on $\{1, ..., N-1\}$. $ax - ay = 0 \pmod{N} \implies a(x - y)$ is a multiple of N.

If gcd(a, N) = 1,

then (x - y) must contain all primes in prime factorization of N, and is therefore be bigger than N.

Only if: For a = xd and N = yd, any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

Euclid's Alg: $gcd(x, y) = gcd(y \mod x, x)$

Fast cuz value drops by a factor of two every two recursive calls.

Know if there is an inverse, but how do we find it?

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

For
$$a \equiv b \pmod{N}$$
, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a+b=c+d \pmod{N}$.

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$.

If and only if gcd(a, N) = 1.

Why? If:
$$f(x) = ax \pmod{N}$$
 is a bijection on $\{1, ..., N-1\}$. $ax - ay = 0 \pmod{N} \implies a(x - y)$ is a multiple of N . If $gcd(a, N) = 1$,

then (x - y) must contain all primes in prime factorization of N, and is therefore be bigger than N.

Only if: For a = xd and N = yd, any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

Euclid's Alg: $gcd(x,y) = gcd(y \mod x, x)$ Fast cuz value drops by a factor of two every two recursive calls.

Know if there is an inverse, but how do we find it? On Tuesday!