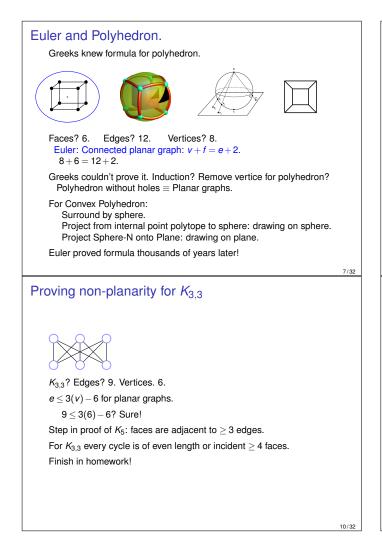
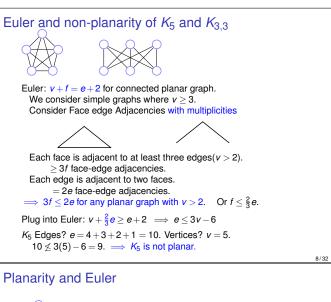
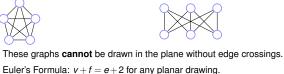
Today. Quick review. Finish Graphs (maybe.)	Proof of "handshake" lemma. Lemma: The sum of degrees is $2 E $, for a graph $G = (V, E)$. What's true? (A) The number of edge-vertex incidences for an edge e is 2. (B) The total number of edge-vertex incidences is $ V $. (C) The total number of edge-vertex incidences is $2 E $. (D) The number of edge-vertex incidences for a vertex v is its degree. (E) The sum of degrees is $2 E $. (F) Total number of edge-vertex incidences is sum of vertex degrees. (B) is false. The others are statements in the proof.	 Poll: Euler concepts. A graph is Euleurian if it is connected and has even degree. A graph is Eulerian if it is connected and has a tour that uses every edge once. Mark correct statements for a connected graph where all vertices have even degree. (Here a tour means uses an edge exactly once, but may involve a vertex several times. (A) There is no Hotel California in this graph. (B) Walking on unused edges, starting at v, eventually "stuck" at v. (C) Removing a tour leaves a graph of even degree. (D) Removing a tour leaves a connected graph. (E) Remove set of edges E' in connected graph, connected component is incident to edge in E' (F) A tour connecting a set of connected components, each with a Eulerian tour is really cool! This implies the graph is Eulerian. Only (D) is false. The rest are steps in the proof.
Lecture 6. Euler's Formula. Planar Six and then Five Color theorem. Types of graphs. Complete Graphs. Trees (a little more.) Hypercubes.	JosePlanar graphs.A graph that can be drawn in the plane without edge crossings.Image: Planar? Yes for Triangle.Planar? Yes for Triangle.Poinglete = every edge present. Kn is n-vertex complete graph. (The node complete or Kn? ? No! Why? Later.Image: Planar	Euler's Formula. $ \begin{array}{c} $





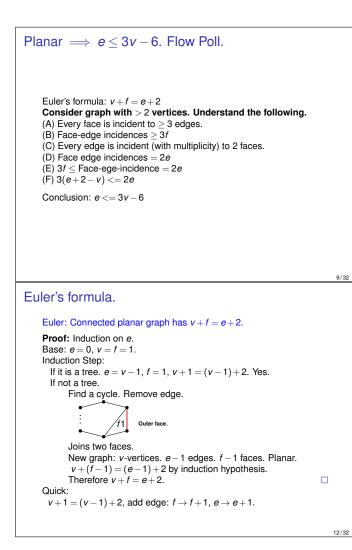


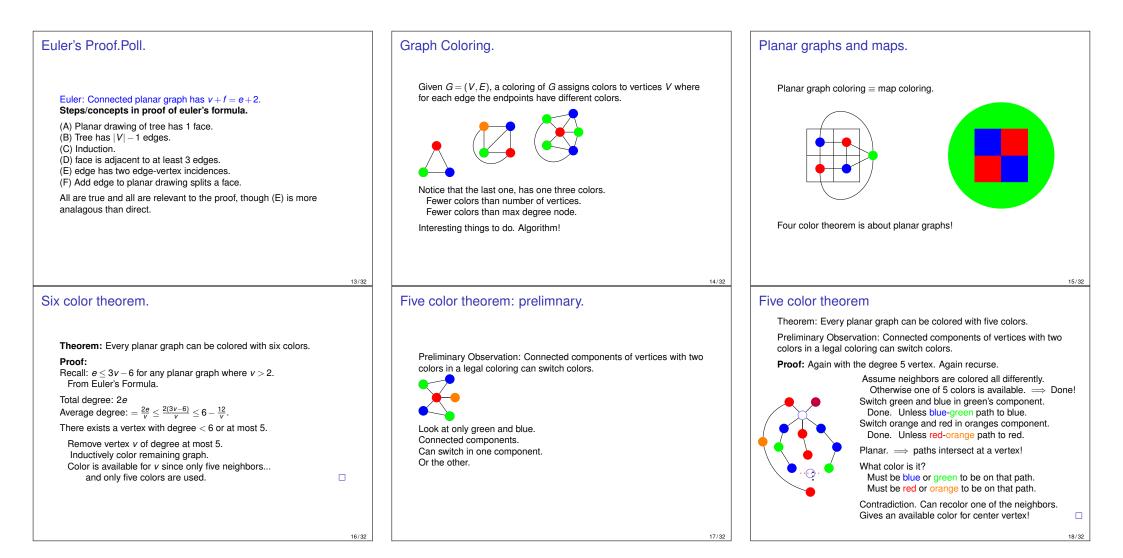
⇒ for simple planar graphs: $e \le 3v - 6$. Idea: Face is a cycle in graph of length 3. Count face-edge incidences.

 $\implies \mbox{for bipartite simple planar graphs: } e \leq 2\nu - 4.$ Idea: face is a cycle in graph of length 4. Count face-edge incidences.

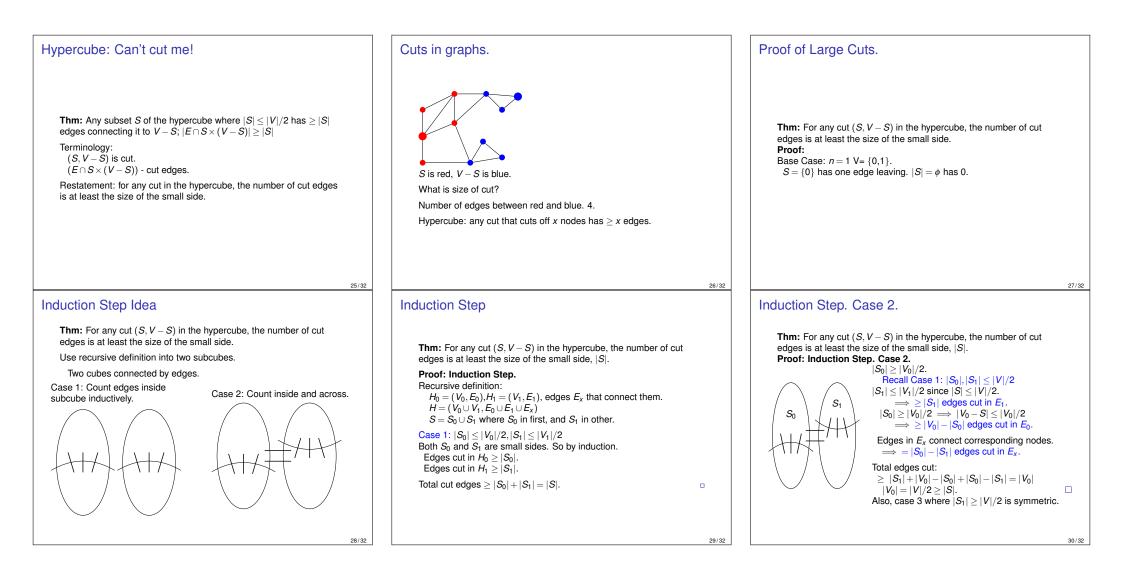
Proved absolutely no drawing can work for these graphs. So.....so ...Cool!

11/32





5 color theorem. Flow poll.	Four Color Theorem	Complete Graph.
 Steps/ideas in 5-color theorem. (A) There is a degree 5 vertex cuz Euler. (B) Take subgraph of first and third colors, recolor first components. (C) If a third's component is different, switched coloring is good. (D) Subgraph of second and fourth colors, can recolor, recolor second component. (G) At least one separate component cuz planarity. (F) Shared color of five neighbors, done. All steps in proof! 	Theorem: Any planar graph can be colored with four colors. Proof: Not Today!	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
19/32	20/32	21/32
K_4 and K_5 \widetilde{K}_5 is not planar. Cannot be drawn in the plane without an edge crossing! Prove it! We did! 22/32	Hypercubes. Complete graphs, really connected! But lots of edges. V (V - 1)/2 Trees, few edges. $(V - 1)$ but just falls apart! Hypercubes. Really connected. $ V \log V $ edges! Also represents bit-strings nicely. G = (V, E) $ V = \{0, 1\}^n$, $ E = \{(x, y) x \text{ and } y \text{ differ in one bit position.}\}$ $0 \longrightarrow 0 \longrightarrow$	Recursive Definition. A 0-dimensional hypercube is a node labelled with the empty string of bits. An <i>n</i> -dimensional hypercube consists of a 0-subcube (1-subcube) which is a n -1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x, 1x). U



Hypercubes and Boolean Functions. The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$. Central area of study in computer science! Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$ Central object of study.	Summary.Euler: $v + f = e + 2$. Tree. Plus adding edge adds face. Planar graphs: $e \le 3v = 6$. Count face-edge incidences to get $2e \le 3f$. Replace f in Euler. Coloring: degree d vertex can be colored if $d + 1$ colors. Small degree vertex in planar graph: 6 color theorem. Recolor separate and planarity: 5 color theorem. Graphs: Trees: sparsest connected. Complete:densest Hypercube: middle. Have a nice weekend!	
31/32	32/32	