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Two-State Markov Chain
Here is a symmetric two-state Markov chain.

It describes a random
motion in {0,1}. Here, a is the probability that the state changes in
the next step.

0 1

Let’s simulate the Markov chain:
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Five-State Markov Chain
At each step, the MC follows one of the outgoing arrows of the current
state, with equal probabilities.
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Finite Markov Chain: Definition

i

j

k1

P (i, j)
P (i, i)

K

▶ A finite set of states: X = {1,2, . . . ,K}
▶ A probability distribution π0 on X : π0(i)≥ 0,∑i π0(i) = 1

▶ Transition probabilities: P(i , j) for i , j ∈ X

P(i , j)≥ 0,∀i , j ; ∑j P(i , j) = 1,∀i

▶ {Xn,n ≥ 0} is defined so that

Pr [X0 = i] = π0(i), i ∈ X (initial distribution)

Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈ X .
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Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let’s define a Markov chain:

▶ X0 = S (start)

▶ Xn = S for n ≥ 1, if last flip was T and no H yet

▶ Xn = E for n ≥ 1, if we already got H (end)
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First Passage Time - Example 1. Poll
Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(D) β (S) = 1+qβ (S)+p0.

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll
Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(D) β (S) = 1+qβ (S)+p0.

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll
Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(D) β (S) = 1+qβ (S)+p0.

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll
Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(D) β (S) = 1+qβ (S)+p0.

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll
Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(D) β (S) = 1+qβ (S)+p0.

All are correct. (D) is the “Markov property.” Only know where you are.



First Passage Time - Example 1. Poll
Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

What is correct?

(A) β (S) is at least 1.
(B) From S, in one step, go to S with prob. q = 1−p
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(D) β (S) = 1+qβ (S)+p0.

All are correct. (D) is the “Markov property.” Only know where you are.



Hitting Time - Example 1

Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E , starting from S.

Then,
β (S) = 1+qβ (S)+p0.

(See next slide.) Hence,

β (S) = 1+(1−p)β (S) =⇒ β (S) = 1, so that β (S) = 1/p.

Note: Time until E is G(p).
The mean of G(p) is 1/p!!!
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First Passage Time - Example 1
Let’s flip a coin with Pr [H] = p until we get H. How many flips, on
average?

Let β (S) be the average time until E .
Then,

β (S) = 1+qβ (S)+p0.

Justification: N – number of steps until E , starting from S.
N ′ – number of steps until E , after the second visit to S.
And Z = 1{first flip = H}. Then,

N = 1+(1−Z )×N ′+Z ×0.

Z and N ′ are “independent.” E [N ′] = E [N] = β (S).
Hence, taking expectation,

β (S) = E [N] = 1+(1−p)E [N ′]+p0 = 1+qβ (S)+p0.
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▶ X0 = S (start)

▶ Xn = E , if we already got two consecutive Hs (end)

▶ Xn = T , if last flip was T and we are not done

▶ Xn = H, if last flip was H and we are not done
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Hitting Time - Example 2

Let’s flip a coin with Pr [H] = p until we get two consecutive Hs. How
many flips, on average?

Here is a picture:

Which one is correct?
(A) β (S) = 1+pβ (H)+qβ (T )
(B) β (S) = pβ (H)+qβ (T )
(C) β (S) = β (S)+qβ (T )+pβ (H).

(A) Expected time from S to E .
β (S) = Pr [H]E [β (S)|H]+Pr [T ]E [β (S)|T ]
β (S) = p(1+β (H))+q(1+β (T )
β (S) = 1+pβ (H)+qβ (T )
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Hitting Time - Example 2

Let’s flip a coin with Pr [H] = p until we get two consecutive Hs. How
many flips, on average?

Here is a picture:

Let β (i) be the average time from state i until the MC hits state E .

We claim that (these are called the first step equations)

β (S) = 1+pβ (H)+qβ (T )

β (H) = 1+p0+qβ (T )

β (T ) = 1+pβ (H)+qβ (T ).

Solving, we find β (S) = 2+3qp−1+q2p−2. (E.g., β (S) = 6 if p = 1/2.)
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Hitting Time - Example 2

Let us justify the first step equation for β (T ). The others are similar.

N(T ) – number of steps, starting from T until the MC hits E .
N(H) – be defined similarly.
N ′(T ) – number of steps after the second visit to T until MC hits E .

N(T ) = 1+Z ×N(H)+(1−Z )×N ′(T )

where Z = 1{first flip in T is H}. Since Z and N(H) are independent,
and Z and N ′(T ) are independent, taking expectations, we get

E [N(T )] = 1+pE [N(H)]+qE [N ′(T )],

i.e.,
β (T ) = 1+pβ (H)+qβ (T ).
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Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8.
How many times do you have to roll the die, on average?

β (S)=1+
1
6

6

∑
j=1

β (j);β (1)=1+
1
6

6

∑
j=1

β (j);β (i)=1+
1
6 ∑

j=1,...,6;j ̸=8−i
β (j), i =2, . . . ,6.

Symmetry: β (2) = · · ·= β (6) =: γ. Also, β (1) = β (S). Thus,

β (S) = 1+(5/6)γ +β (S)/6; γ = 1+(4/6)γ +(1/6)β (S).

⇒ ···β (S) = 8.4.
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Here before There - A before B
Game of “heads or tails” using coin with ‘heads’ probability p < 0.5.

Start with $10.
Each step, flip yields ‘heads’, earn $1. Otherwise, lose $1.
What is the probability that you reach $100 before $0?

Let α(n) be the probability of reaching 100 before 0, starting from n,
for n = 0,1, . . . ,100.
Which equations are correct?
(A) α(0) = 0
(B) α(0) = 1.
(C) α(100) = 1.
(D) α(n) = 1+pα(n+1)+qα(n−1),0 < n < 100.
(E) α(n) = pα(n+1)+qα(n−1),0 < n < 100.

(B) is incorrect, 0 is bad.
(D) is incorrect. Confuses expected hitting time with A before B.
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First Step Equations

Let Xn be a MC on X and A,B ⊂ X with A∩B = /0. Define

TA =min{n ≥ 0 | Xn ∈ A} and TB =min{n ≥ 0 | Xn ∈ B}.

For β (i) = E [TA | X0 = i], first step equations are:

β (i) = 0, i ∈ A
β (i) = 1+∑

j
P(i , j)β (j), i /∈ A

For α(i) = Pr [TA < TB | X0 = i], i ∈ X ,, first step equations are:

α(i) = 1, i ∈ A
α(i) = 0, i ∈ B
α(i) = ∑

j
P(i , j)α(j), i /∈ A∪B.
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Accumulating Rewards

Let Xn be a Markov chain on X with P. Let A ⊂ X

Let also g : X → ℜ be some function.

Define

γ(i) = E [
TA

∑
n=0

g(Xn)|X0 = i], i ∈ X .

Then

γ(i) =
{

g(i), if i ∈ A
g(i)+∑j P(i , j)γ(j), otherwise.
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Example

Flip a fair coin until you get two consecutive Hs.

What is the expected number of Ts that you see?

H HH

T

S
0.5 0.5

0.5
0.5

g(S) = g(H) = g(HH) = 0

g(T ) = 1

FSE:

γ(S) = 0+0.5γ(H)+0.5γ(T )

γ(H) = 0+0.5γ(HH)+0.5γ(T )

γ(T ) = 1+0.5γ(H)+0.5γ(T )

γ(HH) = 0.

Solving, we find γ(S) = 2.5.
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Recap

▶ Markov Chain:

▶ Finite set X ; π0; P = {P(i , j), i , j ∈ X };
▶ Pr [X0 = i] = π0(i), i ∈ X
▶ Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈ X ,n ≥ 0.
▶ Note:

Pr [X0 = i0,X1 = i1, . . . ,Xn = in] = π0(i0)P(i0, i1) · · ·P(in−1, in).

▶ First Passage Time:

▶ A∩B = /0;β (i) = E [TA|X0 = i];α(i) = P[TA < TB|X0 = i]
▶ β (i) = 1+∑j P(i , j)β (j);
▶ α(i) = ∑j P(i , j)α(j). α(A) = 1,α(B) = 0.
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Recall πn is a distribution over states for Xn.

Stationary distribution: π = πP.
Distribution over states is the same before/after transition.
probability entering i : ∑i ,j P(j , i)π(j).
probability leaving i : πi .
are Equal!

Distribution same after one step.
Questions? Does one exist? Is it unique?
If it exists and is unique. Then what?

Sometimes the distribution as n → ∞
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Stationary: Example

Example 1:

1 2

a

b

1 � b1 � a P =


1 � a a

b 1 � b

�

Balance Equations.

πP = π ⇔ [π(1),π(2)]
[

1−a a
b 1−b

]
= [π(1),π(2)]

⇔ π(1)(1−a)+π(2)b = π(1) and π(1)a+π(2)(1−b) = π(2)
⇔ π(1)a = π(2)b.

These equations are redundant! We have to add an equation:
π(1)+π(2) = 1. Then we find

π = [
b

a+b
,

a
a+b

].
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Stationary distributions: Example 2

1 21 1 P =


1 0
0 1

�

πP = π ⇔ [π(1),π(2)]
[

1 0
0 1

]
= [π(1),π(2)]⇔ π(1)= π(1) and π(2)= π(2).

Every distribution is invariant for this Markov chain. Since Xn = X0 for
all n. Hence, Pr [Xn = i] = Pr [X0 = i],∀(i ,n).
Discussion.
We have seen a chain with one stationary,

and a chain with many.

When is here just one?
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[C] is irreducible. It can go from every i to every j .

If you consider the graph with arrows when P(i , j)> 0, irreducible
means that there is a single connected component.
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Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one
invariant distribution.

That is, there is a unique positive vector π = [π(1), . . . ,π(K )] such that
πP = π and ∑k π(k) = 1.

Ok. Now.
Only one stationary distribution if irreducible (or connected.)
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Long Term Fraction of Time in States

Theorem Let Xn be an irreducible Markov chain with invariant
distribution π.

Then, for all i ,

1
n

n−1

∑
m=0

1{Xm = i}→ π(i), as n → ∞.

The left-hand side is the fraction of time that Xm = i during steps
0,1, . . . ,n−1. Thus, this fraction of time approaches π(i).

Proof: Lecture note 21 gives a plausibility argument.
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Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does πn approach the
unique invariant distribution π?

Answer: Not necessarily. Here is an example:
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�
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Assume X0 = 1. Then X1 = 2,X2 = 1,X3 = 2, . . ..

Thus, if π0 = [1,0], π1 = [0,1],π2 = [1,0],π3 = [0,1], etc.

Hence, πn does not converge to π = [1/2,1/2].
Notice, all cycles or closed walks have even length.
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Convergence to stationary distribution.

Theorem Let Xn be an irreducible Markov chain with invariant
distribution π. Then, for all i , 1

n ∑
n−1
m=0 1{Xm = i}→ π(i), as n → ∞.

Example 2:

1 2

0.3

0.7

0.2

0.8

⇡ = [0.4, 0.6]

n

Xn

1

n

n�1X

m=0

1{Xm = 1}

As n gets large the probability of being in either state approaches
1/2. (The stationary distribution.) Notice cycles of length 1 and 2.
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Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in
irreducible chain. Previous example: 2.
Definition If periodicity is 1, Markov chain is said to be aperiodic.
Otherwise, it is periodic.
Example

1 2 3

4 5 6

1 2 3

4 5 6

[A] [B]
Which one is converges to stationary?
(A) [A]
(B) [B]
(C) both
(D) neither.

(A).

[A]: Closed walks of length 3 and length 4 =⇒ periodicity = 1.

[B]: All closed walks multiple of 3 =⇒ periodicity =2.
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Convergence of πn

Theorem Let Xn be an irreducible and aperiodic Markov chain with
invariant distribution π. Then, for all i ∈ X ,

πn(i)→ π(i), as n → ∞.

Example
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Summary

Markov Chains

▶ Markov Chain: Pr [Xn+1 = j |X0, . . . ,Xn = i] = P(i , j)

▶ FSE: β (i) = 1+∑j P(i , j)β (j);α(i) = ∑j P(i , j)α(j).

▶ πn = π0Pn

▶ π is invariant iff πP = π

▶ Irreducible ⇒ one and only one invariant distribution π

▶ Irreducible ⇒ fraction of time in state i approaches π(i)

▶ Irreducible + Aperiodic ⇒ πn → π.

▶ Calculating π: One finds π = [0,0. . . . ,1]Q−1 where Q = · · · .
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