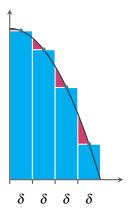
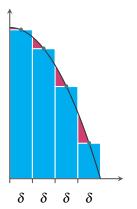
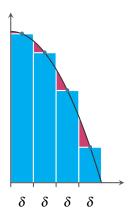


Fill it out!! tinyurl.com/cs70-survey

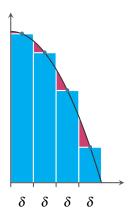




Riemann Sum/Integral: $\int_a^b f(x) dx = \lim_{\delta \to 0} \sum_i \delta f(a_i)$

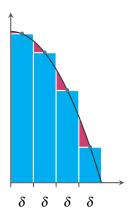


Riemann Sum/Integral: $\int_a^b f(x) dx = \lim_{\delta \to 0} \sum_i \delta f(a_i)$ "Area is defined as rectangles and add up some thin ones."



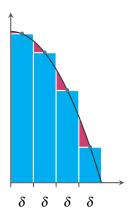
Riemann Sum/Integral: $\int_a^b f(x) dx = \lim_{\delta \to 0} \sum_i \delta f(a_i)$ "Area is defined as rectangles and add up some thin ones."

Derivative (Rate of change): $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}.$



Riemann Sum/Integral: $\int_a^b f(x) dx = \lim_{\delta \to 0} \sum_i \delta f(a_i)$ "Area is defined as rectangles and add up some thin ones."

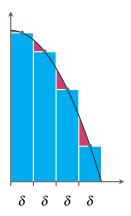
Derivative (Rate of change): $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$. "Rise over run of close together points."



Riemann Sum/Integral: $\int_a^b f(x) dx = \lim_{\delta \to 0} \sum_i \delta f(a_i)$ "Area is defined as rectangles and add up some thin ones."

Derivative (Rate of change): $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$. "Rise over run of close together points."

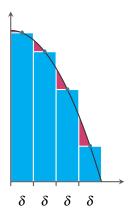
Fundamental Theorem: $F(b) - F(a) = \int_a^b F'(x) dx$.



Riemann Sum/Integral: $\int_a^b f(x) dx = \lim_{\delta \to 0} \sum_i \delta f(a_i)$ "Area is defined as rectangles and add up some thin ones."

Derivative (Rate of change): $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$. "Rise over run of close together points."

Fundamental Theorem: $F(b) - F(a) = \int_a^b F'(x) dx$. "Area $(F(\cdot))$ under f(x) grows at x, F'(x), by f(x)"



Riemann Sum/Integral: $\int_a^b f(x) dx = \lim_{\delta \to 0} \sum_i \delta f(a_i)$ "Area is defined as rectangles and add up some thin ones."

Derivative (Rate of change): $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$. "Rise over run of close together points."

Fundamental Theorem: $F(b) - F(a) = \int_a^b F'(x) dx$. "Area ($F(\cdot)$) under f(x) grows at x, F'(x), by f(x)" Thus F'(x) = f(x).

CS70: Continuous Probability.

Continuous Probability 1

CS70: Continuous Probability.

Continuous Probability 1

CS70: Continuous Probability.

Continuous Probability 1

- 1. Examples
- 2. Events
- 3. Continuous Random Variables

Choose a real number X, uniformly at random in

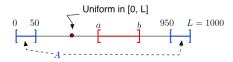
Choose a real number X, uniformly at random in [0, 1].

Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3?

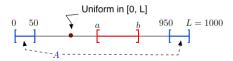
Choose a real number *X*, uniformly at random in [0, 1]. What is the probability that *X* is exactly equal to 1/3? Well, ...,

Choose a real number *X*, uniformly at random in [0, 1]. What is the probability that *X* is exactly equal to 1/3? Well, ..., 0.

Choose a real number *X*, uniformly at random in [0, 1]. What is the probability that *X* is exactly equal to 1/3? Well, ..., 0.



Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.



What is the probability that X is exactly equal to 0.6?

Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] =

Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

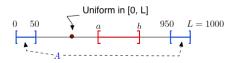
What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0.

Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0.

How should we then describe 'choosing uniformly at random in [0,1]'?

Choose a real number X, uniformly at random in [0,1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.



What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0.

How should we then describe 'choosing uniformly at random in [0, 1]'? Here is the way to do it:

Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0. How should we then describe 'choosing uniformly at random in [0, 1]'? Here is the way to do it:

$$Pr[X \in [a,b]] = b - a, \forall 0 \le a \le b \le 1.$$

Choose a real number X, uniformly at random in [0, 1]. What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has Pr[X = x] = 0. How should we then describe 'choosing uniformly at random in [0, 1]'? Here is the way to do it:

$$Pr[X \in [a,b]] = b - a, \forall 0 \le a \le b \le 1.$$

Makes sense: b - a is the fraction of [0, 1] that [a, b] covers.

.

$$F_X(x) = Pr[X \leq x]$$

٠

$$F_X(x) = Pr[X \leq x]$$

$$f_X(x) = \lim_{\delta \to 0} \frac{\Pr[X \in (x, x + \delta)]}{\delta}$$

•

$$F_X(x) = Pr[X \leq x]$$

$$f_X(x) = \lim_{\delta \to 0} \frac{\Pr[X \in (x, x + \delta)]}{\delta}$$

What is true?
(A)
$$F_X(x) = \int_{-\infty}^{\infty} f_X(y) dy$$

(B) $\int_{-\infty}^{\infty} f_X(x) = 1$
(C) $F_X(x) = \int_{-\infty}^{x} f(y) dy$.
(D) $f(x) = F'_X(x)$.
(E) $\int_{-\infty}^{\infty} F_X(x) dx = 1$.
(F) $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} (1 - F(x)) dx$.

•

$$F_X(x) = Pr[X \leq x]$$

$$f_X(x) = \lim_{\delta \to 0} \frac{\Pr[X \in (x, x + \delta)]}{\delta}$$

What is true?
(A)
$$F_X(x) = \int_{-\infty}^{\infty} f_X(y) dy$$

(B) $\int_{-\infty}^{\infty} f_X(x) = 1$
(C) $F_X(x) = \int_{-\infty}^{x} f(y) dy$.
(D) $f(x) = F'_X(x)$.
(E) $\int_{-\infty}^{\infty} F_X(x) dx = 1$.
(F) $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} (1 - F(x)) dx$.

(A) False. limits wrong. (B) cuz probability distribution.

$$F_X(x) = Pr[X \leq x]$$

$$f_X(x) = \lim_{\delta \to 0} \frac{\Pr[X \in (x, x + \delta)]}{\delta}$$

What is true? (A) $F_X(x) = \int_{-\infty}^{\infty} f_X(y) dy$ (B) $\int_{-\infty}^{\infty} f_X(x) = 1$ (C) $F_X(x) = \int_{-\infty}^{x} f(y) dy$. (D) $f(x) = F'_X(x)$. (E) $\int_{-\infty}^{\infty} F_X(x) dx = 1$. (F) $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} (1 - F(x)) dx$.

(A) False. limits wrong. (B) cuz probability distribution.(C) "sums up probability of rectangles", e.g. calculus.

$$F_X(x) = Pr[X \leq x]$$

$$f_X(x) = \lim_{\delta \to 0} \frac{\Pr[X \in (x, x + \delta)]}{\delta}$$

What is true? (A) $F_X(x) = \int_{-\infty}^{\infty} f_X(y) dy$ (B) $\int_{-\infty}^{\infty} f_X(x) = 1$ (C) $F_X(x) = \int_{-\infty}^{x} f(y) dy$. (D) $f(x) = F'_X(x)$. (E) $\int_{-\infty}^{\infty} F_X(x) dx = 1$. (F) $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} (1 - F(x)) dx$.

(A) False. limits wrong. (B) cuz probability distribution.(C) "sums up probability of rectangles", e.g. calculus.(D) calculus, fundamental theorem.

$$F_X(x) = Pr[X \leq x]$$

$$f_X(x) = \lim_{\delta \to 0} \frac{\Pr[X \in (x, x + \delta)]}{\delta}$$

What is true? (A) $F_X(x) = \int_{-\infty}^{\infty} f_X(y) dy$ (B) $\int_{-\infty}^{\infty} f_X(x) = 1$ (C) $F_X(x) = \int_{-\infty}^{x} f(y) dy$. (D) $f(x) = F'_X(x)$. (E) $\int_{-\infty}^{\infty} F_X(x) dx = 1$. (F) $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} (1 - F(x)) dx$.

(A) False. limits wrong. (B) cuz probability distribution.(C) "sums up probability of rectangles", e.g. calculus.(D) calculus, fundamental theorem.

$$F_X(x) = Pr[X \leq x]$$

$$f_X(x) = \lim_{\delta \to 0} \frac{\Pr[X \in (x, x + \delta)]}{\delta}$$

What is true? (A) $F_X(x) = \int_{-\infty}^{\infty} f_X(y) dy$ (B) $\int_{-\infty}^{\infty} f_X(x) = 1$ (C) $F_X(x) = \int_{-\infty}^{x} f(y) dy$. (D) $f(x) = F'_X(x)$. (E) $\int_{-\infty}^{\infty} F_X(x) dx = 1$. (F) $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} (1 - F(x)) dx$.

(A) False. limits wrong. (B) cuz probability distribution.(C) "sums up probability of rectangles", e.g. calculus.(D) calculus, fundamental theorem.

(F) is true since $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} F(x) dx = E[X]$.

$$F_X(x) = Pr[X \leq x]$$

$$f_X(x) = \lim_{\delta \to 0} \frac{\Pr[X \in (x, x + \delta)]}{\delta}$$

What is true? (A) $F_X(x) = \int_{-\infty}^{\infty} f_X(y) dy$ (B) $\int_{-\infty}^{\infty} f_X(x) = 1$ (C) $F_X(x) = \int_{-\infty}^{x} f(y) dy$. (D) $f(x) = F'_X(x)$. (E) $\int_{-\infty}^{\infty} F_X(x) dx = 1$. (F) $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} (1 - F(x)) dx$.

(A) False. limits wrong. (B) cuz probability distribution.(C) "sums up probability of rectangles", e.g. calculus.(D) calculus, fundamental theorem.

(F) is true since $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{\infty} F(x) dx = E[X]$.

Next lecture.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

Let [a, b] denote the **event** that the point X is in the interval [a, b].

Pr[[a,b]] =

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} =$$

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are **events.**

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] =$$

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0, 0.2] \cup [0.8, 1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0, 1], then

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0, 0.2] \cup [0.8, 1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0, 1], then

$$Pr[\cup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of [0,1] are of this form.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0, 1], then

$$Pr[\cup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of [0,1] are of this form. Thus, the probability of those sets is well defined.

Let [a, b] denote the **event** that the point X is in the interval [a, b].

$$Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$$

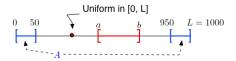
Intervals like $[a,b] \subseteq \Omega = [0,1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0,0.2] \cup [0.8,1]$. Thus,

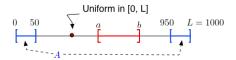
$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in [0, 1], then

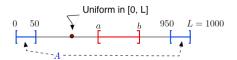
$$Pr[\cup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of [0,1] are of this form. Thus, the probability of those sets is well defined. We call such sets events.

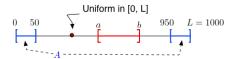




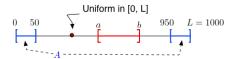
Note: A radical change in approach.



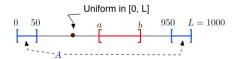
Note: A **radical** change in approach. **Finite prob. space:**



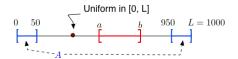
Note: A radical change in approach. Finite prob. space: $\Omega = \{1, 2, ..., N\},\$



Note: A radical change in approach. Finite prob. space: $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$.

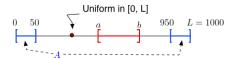


Note: A **radical** change in approach. **Finite prob. space:** $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$. $\implies Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.



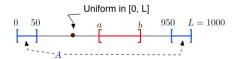
Note: A **radical** change in approach. **Finite prob. space:** $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$. $\implies Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.

Continuous space:



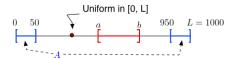
Note: A **radical** change in approach. **Finite prob. space:** $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$. $\implies Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.

Continuous space: e.g., $\Omega = [0, 1]$,



Note: A **radical** change in approach. **Finite prob. space:** $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$. $\implies Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.

Continuous space: e.g., $\Omega = [0, 1]$, *Pr*[ω] is typically 0.

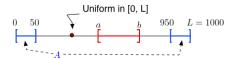


Note: A **radical** change in approach. **Finite prob. space:** $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$. $\implies Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.

Continuous space: e.g., $\Omega = [0, 1]$,

 $Pr[\omega]$ is typically 0.

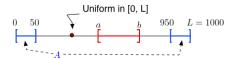
Instead, start with *Pr*[*A*] for some events *A*.



Note: A **radical** change in approach. **Finite prob. space:** $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$. $\implies Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.

Continuous space: e.g., $\Omega = [0, 1]$,

 $Pr[\omega]$ is typically 0. Instead, start with Pr[A] for some events A. Event A = interval,



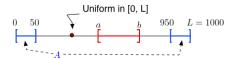
Note: A **radical** change in approach. **Finite prob. space:** $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$. $\implies Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.

Continuous space: e.g., $\Omega = [0, 1]$,

 $Pr[\omega]$ is typically 0.

Instead, start with *Pr*[*A*] for some events *A*.

Event A = interval, or union of intervals.



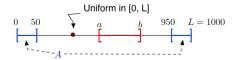
Note: A **radical** change in approach. **Finite prob. space:** $\Omega = \{1, 2, ..., N\}$, with $Pr[\omega] = p_{\omega}$. $\implies Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$.

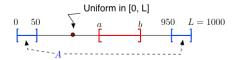
Continuous space: e.g., $\Omega = [0, 1]$,

 $Pr[\omega]$ is typically 0.

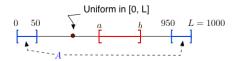
Instead, start with *Pr*[*A*] for some events *A*.

Event A = interval, or union of intervals.

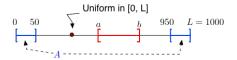




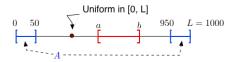
 $Pr[X \le x] = x$ for $x \in [0, 1]$.



 $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0.

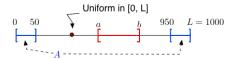


 $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0. $Pr[X \le x] = 1$ for .2x > 1.



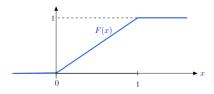
 $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0. $Pr[X \le x] = 1$ for .2x > 1.

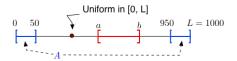
Define $F(x) = Pr[X \le x]$.



 $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0. $Pr[X \le x] = 1$ for .2x > 1.

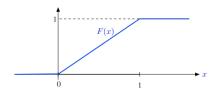
Define $F(x) = Pr[X \le x]$.



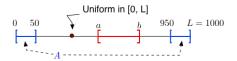


 $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0. $Pr[X \le x] = 1$ for .2x > 1.

Define $F(x) = Pr[X \le x]$.

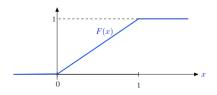


Then we have $Pr[X \in (a, b]] = Pr[X \le b] - Pr[X \le a]$

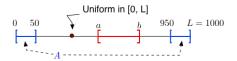


 $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0. $Pr[X \le x] = 1$ for .2x > 1.

Define $F(x) = Pr[X \le x]$.

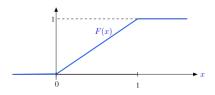


Then we have $Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a)$.

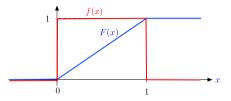


 $Pr[X \le x] = x$ for $x \in [0, 1]$. Also, $Pr[X \le x] = 0$ for x < 0. $Pr[X \le x] = 1$ for .2x > 1.

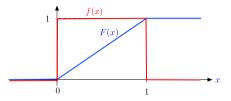
Define $F(x) = Pr[X \le x]$.



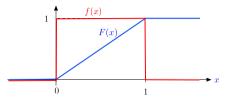
Then we have $Pr[X \in (a, b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a)$. Thus, $F(\cdot)$ specifies the probability of all the events!



 $Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a]$

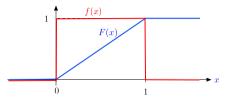


 $\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$



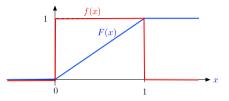
 $\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) =$



 $\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$

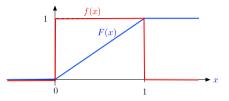
An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0, 1]\}.$



$$\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b)-F(a)=\int_a^b f(x)dx$$

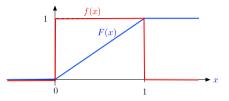


 $Pr[X \in (a,b]] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a).$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b)-F(a)=\int_a^b f(x)dx.$$

Thus, the probability of an event is the integral of f(x) over the event:



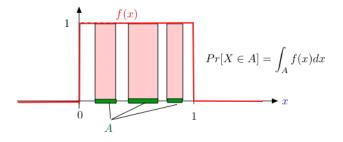
$$\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$$

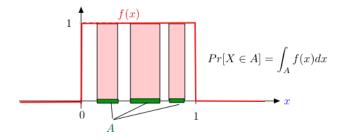
An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b)-F(a)=\int_a^b f(x)dx.$$

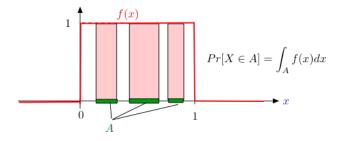
Thus, the probability of an event is the integral of f(x) over the event:

$$Pr[X \in A] = \int_A f(x) dx$$

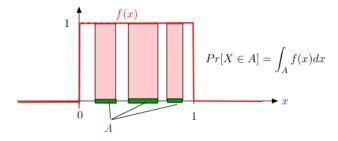




Think of f(x) as describing how one unit of probability is spread over [0,1]:

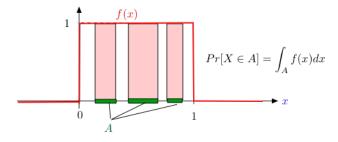


Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!



Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!

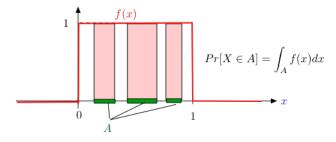
Then $Pr[X \in A]$ is the probability mass over *A*.



Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over *A*.

Observe:

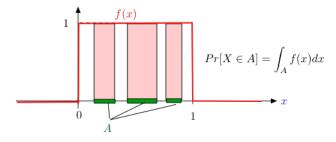


Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:

> This makes the probability automatically additive.

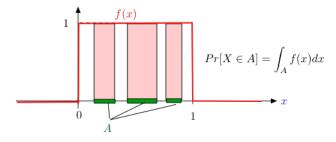


Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:

- > This makes the probability automatically additive.
- We need $f(x) \ge 0$



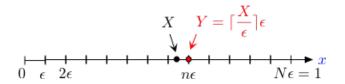
Think of f(x) as describing how one unit of probability is spread over [0,1]: uniformly!

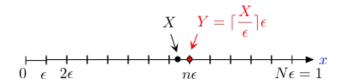
Then $Pr[X \in A]$ is the probability mass over A.

Observe:

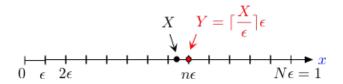
This makes the probability automatically additive.

• We need
$$f(x) \ge 0$$
 and $\int_{-\infty}^{\infty} f(x) dx = 1$.

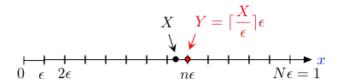




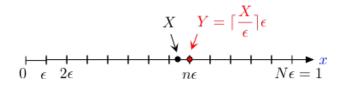
Discrete Approximation:



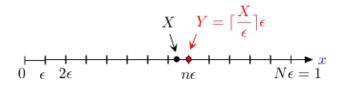
Discrete Approximation: Fix $N \gg 1$



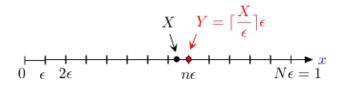
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.



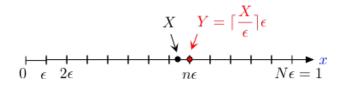
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$. Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.



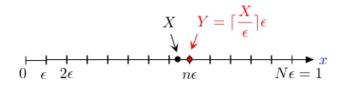
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$. Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N. Then $|X - Y| \le \varepsilon$



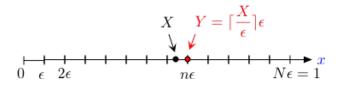
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$. Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N. Then $|X - Y| \le \varepsilon$ and *Y* is discrete:



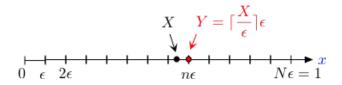
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$. Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N. Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in {\varepsilon, 2\varepsilon, ..., N\varepsilon}$.



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$. Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1,...,N. Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in \{\varepsilon, 2\varepsilon, ..., N\varepsilon\}$. Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1,...,N.



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$. Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1,...,N. Then $|X - Y| \le \varepsilon$ and *Y* is discrete: $Y \in {\varepsilon, 2\varepsilon, ..., N\varepsilon}$. Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1,...,N. Thus, *X* is 'almost discrete.'



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

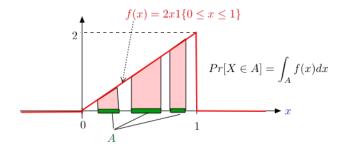
Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

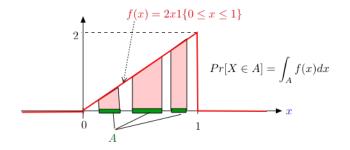
Then $|X - Y| \le \varepsilon$ and *Y* is discrete: $Y \in \{\varepsilon, 2\varepsilon, ..., N\varepsilon\}$.

Also,
$$Pr[Y = n\varepsilon] = \frac{1}{N}$$
 for $n = 1, ..., N$.

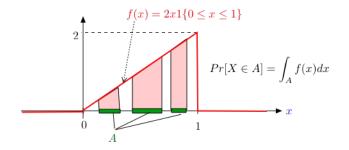
Thus, X is 'almost discrete.'

Calculus view: $Pr[Y = n\varepsilon]$ is area of rectangle in Riemann sum.

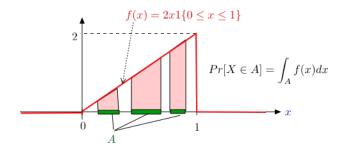




This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.



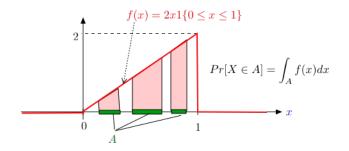
This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0, 1].



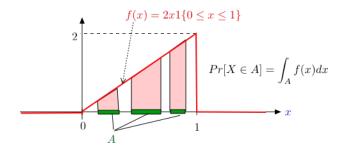
This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

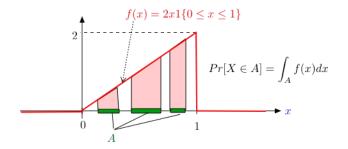
Note that X is more likely to be closer to 1 than to 0.



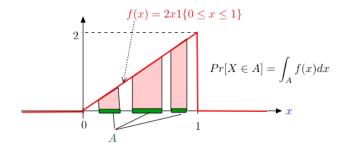
This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has



This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$



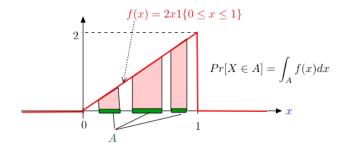
This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$ for $x \in [0,1]$.



This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$ for $x \in [0,1]$.

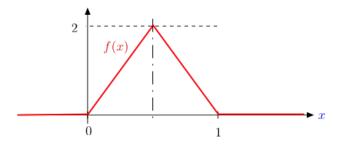
Also, $Pr[X \in (x, x + \varepsilon)] = \int_{x}^{x+\varepsilon} f(u) du$

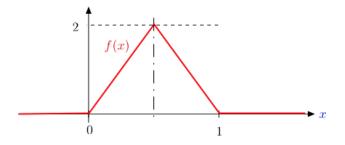
Nonuniformly at Random in [0,1].



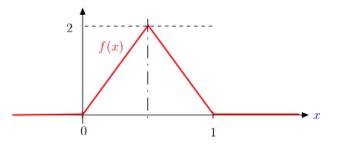
This figure shows a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing *X* at random in [0,1]. Note that *X* is more likely to be closer to 1 than to 0. One has $Pr[X \le x] = \int_{-\infty}^{x} f(u) du = x^2$ for $x \in [0,1]$.

Also, $Pr[X \in (x, x + \varepsilon)] = \int_{x}^{x+\varepsilon} f(u) du \approx f(x)\varepsilon$.



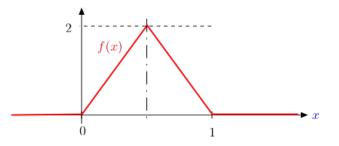


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

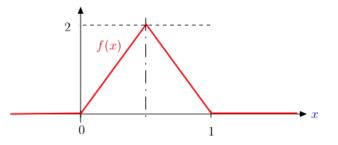
It defines another way of choosing X at random in [0, 1].



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

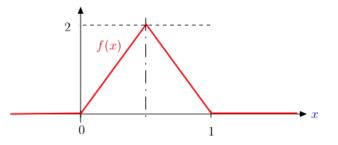


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] =$

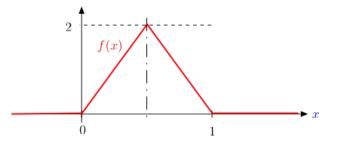


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

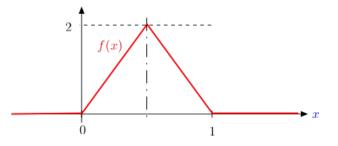
Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 1$$



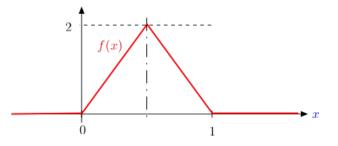
This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1]. Note that X is more likely to be closer to 1/2 than to 0 or 1. For instance, $Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$.



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1]. Note that X is more likely to be closer to 1/2 than to 0 or 1. For instance, $Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$. Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$

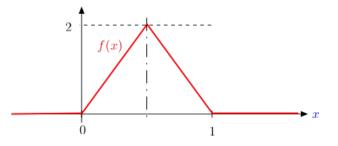


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.
Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$ and $Pr[X \in [1/3, 2/3]] =$



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.
Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$ and $Pr[X \in [1/3, 2/3]] = \frac{5}{9}$.

Let F(x) be a nondecreasing function

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

 $Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let $f(x) = \frac{d}{dx}F(x)$.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = rac{d}{dx}F(x)$$
. Then, $Pr[X \in (x,x+arepsilon]] =$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let $f(x) = \frac{d}{dx}F(x)$. Then, $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x)$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let $f(x) = \frac{d}{dx}F(x)$. Then, $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

F(x) is cumulative distribution function (cdf) of X

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

F(x) is cumulative distribution function (cdf) of X f(x) is the probability density function (pdf) of X.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

F(x) is cumulative distribution function (cdf) of X f(x) is the probability density function (pdf) of X. When F and f correspond RV X:

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

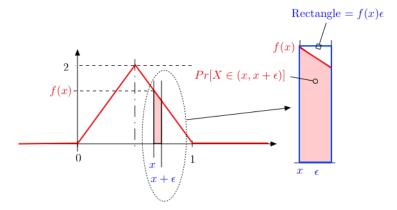
$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

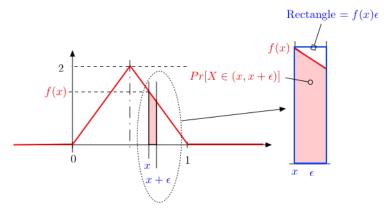
F(x) is cumulative distribution function (cdf) of X f(x) is the probability density function (pdf) of X. When F and f correspond RV X: $F_X(x)$ and $f_X(x)$.

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

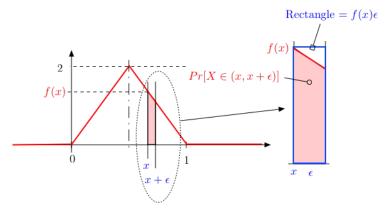


An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:



Thus, the pdf is the 'local probability by unit length.'

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:



Thus, the pdf is the 'local probability by unit length.' It is the 'probability density.'

Fix $\varepsilon \ll 1$

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \le \varepsilon$ and *Y* is a discrete random variable.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.
Also, if $f_X(x) = \frac{d}{dx}F_X(x)$,

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$. Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable. Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x+\varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.
Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.
Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of *X* of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.
Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of *X* of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Example: hitting random location on gas tank.

Example: hitting random location on gas tank. Random location on circle.

Example: hitting random location on gas tank. Random location on circle.

Example: hitting random location on gas tank. Random location on circle.

What is probability of being within *y* of the center, for non-negative $y \le 1$?

Example: hitting random location on gas tank. Random location on circle.

What is probability of being within y of the center, for non-negative $y \le 1$?

(A) 1. (B) 0. (C) $\int_0^y (2\pi y) dy$ (D) y^2 .

Example: hitting random location on gas tank. Random location on circle.

What is probability of being within *y* of the center, for non-negative $y \le 1$?

(A) 1. (B) 0. (C) $\int_0^y (2\pi y) dy$ (D) y^2 .

(D) Next slide.

Example: hitting random location on gas tank.

Example: hitting random location on gas tank. Random location on circle.

Example: hitting random location on gas tank. Random location on circle.

Example: hitting random location on gas tank. Random location on circle.

Random Variable: Y distance from center.

Example: hitting random location on gas tank. Random location on circle.

Random Variable: *Y* distance from center. Probability within *y* of center:

Example: hitting random location on gas tank. Random location on circle.

Random Variable: *Y* distance from center. Probability within *y* of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$

Example: hitting random location on gas tank. Random location on circle.

Random Variable: *Y* distance from center. Probability within *y* of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$
$$= \frac{\pi y^2}{\pi}$$

Example: hitting random location on gas tank. Random location on circle.

Random Variable: *Y* distance from center. Probability within *y* of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$
$$= \frac{\pi y^2}{\pi} = y^2.$$

Hence,

$$F_Y(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^2 & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

Probability between .5 and .6 of center?

$$F_Y(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^2 & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$F_Y(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^2 & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

$$F_Y(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^2 & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$\begin{aligned} \Pr[0.5 < Y \le 0.6] &= \Pr[Y \le 0.6] - \Pr[Y \le 0.5] \\ &= F_Y(0.6) - F_Y(0.5) \end{aligned}$$

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$\begin{aligned} \Pr[0.5 < Y \le 0.6] &= \Pr[Y \le 0.6] - \Pr[Y \le 0.5] \\ &= F_Y(0.6) - F_Y(0.5) \\ &= .36 - .25 \end{aligned}$$

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= $F_Y(0.6) - F_Y(0.5)$
= .36 - .25
= .11

Example: "Dart" board.

Example: "Dart" board. Recall that

$$F_Y(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^2 & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

Example: "Dart" board. Recall that

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$
$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0\\ 2y & \text{for } 0 \le y \le 1\\ 0 & \text{for } y > 1 \end{cases}$$

Example: "Dart" board. Recall that

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$
$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0\\ 2y & \text{for } 0 \le y \le 1\\ 0 & \text{for } y > 1 \end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.

Example: "Dart" board. Recall that

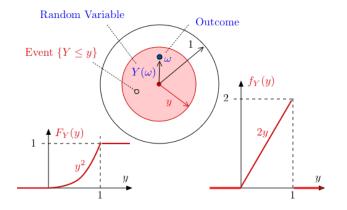
$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$
$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0\\ 2y & \text{for } 0 \le y \le 1\\ 0 & \text{for } y > 1 \end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.

Use whichever is convenient.

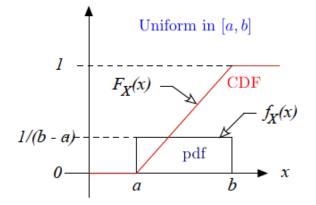
Target

Target



U[*a*,*b*]

U[*a*,*b*]



 $Pr[X = i] = (1 - p)^{i-1}p.$

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

(A)
$$X \sim G(p)$$

(B) $Pr[X > i] = (1-p)^{i}$.
(C) $Pr[Y > i/n] = (1-\lambda/n)^{i}$.
(D) $Pr[Y > y] = (1-\lambda/n)^{ny}$.
(E) $\lim_{n\to\infty} (1-\lambda/n)^{ny} = e^{-\lambda y}$.

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

- (A) $X \sim G(p)$ (B) $Pr[X > i] = (1-p)^{i}$. (C) $Pr[Y > i/n] = (1-\lambda/n)^{i}$. (D) $Pr[Y > y] = (1-\lambda/n)^{ny}$. (E) $\lim_{n\to\infty} (1-\lambda/n)^{ny} = e^{-\lambda y}$.
- (A) True by definition.

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

- (A) $X \sim G(p)$ (B) $Pr[X > i] = (1 - p)^{i}$. (C) $Pr[Y > i/n] = (1 - \lambda/n)^{i}$. (D) $Pr[Y > y] = (1 - \lambda/n)^{ny}$. (E) $\lim_{n \to \infty} (1 - \lambda/n)^{ny} = e^{-\lambda y}$.
- (A) True by definition. (B) $Pr[X > i] = (1 - p)^i$ at least *i* coin flips fail.

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

(A)
$$X \sim G(p)$$

(B) $Pr[X > i] = (1-p)^{i}$.
(C) $Pr[Y > i/n] = (1-\lambda/n)^{i}$.
(D) $Pr[Y > y] = (1-\lambda/n)^{ny}$.
(E) $\lim_{n\to\infty} (1-\lambda/n)^{ny} = e^{-\lambda y}$.

(A) True by definition.
(B)
$$Pr[X > i] = (1 - p)^i$$
 at least *i* coin flips fail.
(C) True, definition of *Y*

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

(A)
$$X \sim G(p)$$

(B) $Pr[X > i] = (1-p)^{i}$.
(C) $Pr[Y > i/n] = (1-\lambda/n)^{i}$.
(D) $Pr[Y > y] = (1-\lambda/n)^{ny}$.
(E) $\lim_{n\to\infty} (1-\lambda/n)^{ny} = e^{-\lambda y}$.

(A) True by definition.
(B)
$$Pr[X > i] = (1 - p)^i$$
 at least *i* coin flips fail.
(C) True, definition of *Y*
(D) True, $y = i/n$ means $i = ny$.

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

(A)
$$X \sim G(p)$$

(B) $Pr[X > i] = (1-p)^{i}$.
(C) $Pr[Y > i/n] = (1-\lambda/n)^{i}$.
(D) $Pr[Y > y] = (1-\lambda/n)^{ny}$.
(E) $\lim_{n\to\infty} (1-\lambda/n)^{ny} = e^{-\lambda y}$.

(A) True by definition.
(B)
$$Pr[X > i] = (1 - p)^i$$
 at least *i* coin flips fail.
(C) True, definition of *Y*
(D) True, $y = i/n$ means $i = ny$.
(E) $(1 - \lambda/n)^{ny} = ((1 - \lambda/n)^{n/\lambda})^{\lambda y}$

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

(A)
$$X \sim G(p)$$

(B) $Pr[X > i] = (1-p)^{i}$.
(C) $Pr[Y > i/n] = (1-\lambda/n)^{i}$.
(D) $Pr[Y > y] = (1-\lambda/n)^{ny}$.
(E) $\lim_{n\to\infty} (1-\lambda/n)^{ny} = e^{-\lambda y}$.

(A) True by definition.
(B)
$$Pr[X > i] = (1 - p)^i$$
 at least *i* coin flips fail.
(C) True, definition of *Y*
(D) True, $y = i/n$ means $i = ny$.
(E) $(1 - \lambda/n)^{ny} = ((1 - \lambda/n)^{n/\lambda})^{\lambda y}$
and $\lim_{n\to\infty} (1 - \frac{\lambda}{n})^{n/\lambda} = e$.

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

(A)
$$X \sim G(p)$$

(B) $Pr[X > i] = (1-p)^{i}$.
(C) $Pr[Y > i/n] = (1-\lambda/n)^{i}$.
(D) $Pr[Y > y] = (1-\lambda/n)^{ny}$.
(E) $\lim_{n\to\infty} (1-\lambda/n)^{ny} = e^{-\lambda y}$.

(A) True by definition.
(B)
$$Pr[X > i] = (1 - p)^i$$
 at least *i* coin flips fail.
(C) True, definition of *Y*
(D) True, $y = i/n$ means $i = ny$.
(E) $(1 - \lambda/n)^{ny} = ((1 - \lambda/n)^{n/\lambda})^{\lambda y}$
and $\lim_{n\to\infty} (1 - \frac{\lambda}{n})^{n/\lambda} = e$.

The limit as $n \to \infty$ of Y has $Pr[Y > y] = e^{-\lambda y}$.

$$Pr[X = i] = (1 - p)^{i-1}p.$$

Let $p = \lambda/n$. and $Y = X/n$.
What is true?

(A)
$$X \sim G(p)$$

(B) $Pr[X > i] = (1-p)^{i}$.
(C) $Pr[Y > i/n] = (1-\lambda/n)^{i}$.
(D) $Pr[Y > y] = (1-\lambda/n)^{ny}$.
(E) $\lim_{n\to\infty} (1-\lambda/n)^{ny} = e^{-\lambda y}$.

(A) True by definition.
(B)
$$Pr[X > i] = (1 - p)^i$$
 at least *i* coin flips fail.
(C) True, definition of *Y*
(D) True, $y = i/n$ means $i = ny$.
(E) $(1 - \lambda/n)^{ny} = ((1 - \lambda/n)^{n/\lambda})^{\lambda y}$
and $\lim_{n\to\infty} (1 - \frac{\lambda}{n})^{n/\lambda} = e$.

The limit as $n \to \infty$ of Y has $Pr[Y > y] = e^{-\lambda y}$.

Pr[Y > y] is defined as "Survival function."

"Limit of geometric."

"Limit of geometric."

From last slide:
$$S(t) = Pr[X > t] = e^{-\lambda t}$$
 for $t > 0$.
Note: $f_X(x) = F'(t) = (1 - S(t))' = -S'(t)$.

"Limit of geometric."

From last slide:
$$S(t) = Pr[X > t] = e^{-\lambda t}$$
 for $t > 0$.
Note: $f_X(x) = F'(t) = (1 - S(t))' = -S'(t)$.

The exponential distribution with parameter $\lambda > 0$ is defined by

"Limit of geometric."

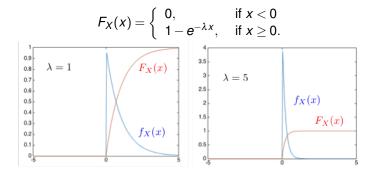
From last slide:
$$S(t) = Pr[X > t] = e^{-\lambda t}$$
 for $t > 0$.
Note: $f_X(x) = F'(t) = (1 - S(t))' = -S'(t)$.

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

"Limit of geometric."

From last slide:
$$S(t) = Pr[X > t] = e^{-\lambda t}$$
 for $t > 0$.
Note: $f_X(x) = F'(t) = (1 - S(t))' = -S'(t)$.

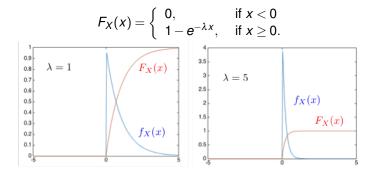
The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$



"Limit of geometric."

From last slide:
$$S(t) = Pr[X > t] = e^{-\lambda t}$$
 for $t > 0$.
Note: $f_X(x) = F'(t) = (1 - S(t))' = -S'(t)$.

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$



Continuous random variable X, specified by

1. $F_X(x) = Pr[X \le x]$ for all x.

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \le x]$ for all *x*. Cumulative Distribution Function (cdf).

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \le x]$ for all *x*. **Cumulative Distribution Function (cdf)**. $Pr[a < X \le b] = F_X(b) - F_X(a)$

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \le x]$ for all x. **Cumulative Distribution Function (cdf)**. $Pr[a < X \le b] = F_X(b) - F_X(a)$ 1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or
$$f_X(x)$$
, where $F_X(x) = \int_{-\infty}^x f_X(u) du$

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \mathfrak{R}$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \mathfrak{R}$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).**

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \mathfrak{R}$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or
$$f_X(x)$$
, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
Probability Density Function (pdf).
 $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$
2.1 $f_X(x) \ge 0$ for all $x \in \mathfrak{R}$.

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or
$$f_X(x)$$
, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
Probability Density Function (pdf).
 $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$
2.1 $f_X(x) \ge 0$ for all $x \in \Re$.
2.2 $\int_{-\infty}^{\infty} f_X(x) dx = 1$.

Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$ 2.1 $f_X(x) \ge 0$ for all $x \in \mathfrak{R}$. 2.2 $\int_{-\infty}^{\infty} f_X(x) dx = 1$.

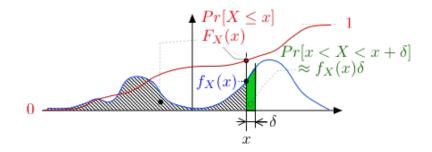
Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$.

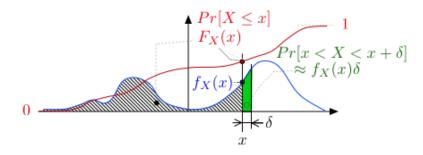
Continuous random variable X, specified by

1.
$$F_X(x) = Pr[X \le x]$$
 for all x .
Cumulative Distribution Function (cdf).
 $Pr[a < X \le b] = F_X(b) - F_X(a)$
1.1 $0 \le F_X(x) \le 1$ for all $x \in \Re$.
1.2 $F_X(x) \le F_X(y)$ if $x \le y$.

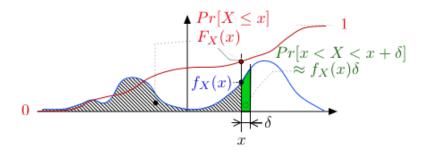
2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^x f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$. **Probability Density Function (pdf).** $Pr[a < X \le b] = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$ 2.1 $f_X(x) \ge 0$ for all $x \in \Re$. 2.2 $\int_{-\infty}^{\infty} f_X(x) dx = 1$.

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$. *X* "takes" value $n\delta$, for $n \in Z$, with $Pr[X = n\delta] = f_X(n\delta)\delta$

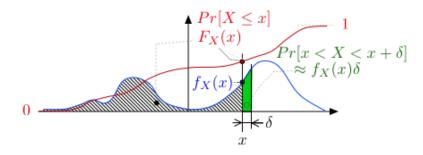




The pdf $f_X(x)$ is a nonnegative function that integrates to 1.

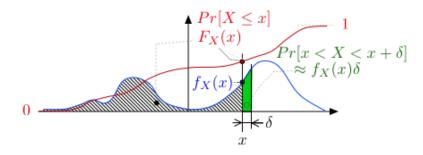


The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .



The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$



The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$
$$Pr[X \le x] = F_x(x) = \int_{-\infty}^x f_X(u)du$$

One defines a pair (X, Y) of continuous RVs by specifying

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

 $f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

 $f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example:

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x,x+dx), Y \in (y+dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

 $f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x, y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (X, Y) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Recall Marginal Distribution:

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Recall Marginal Distribution:

$$Pr[X = x] = \sum_{y} Pr[X = x, Y = y].$$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Recall Marginal Distribution:

$$Pr[X = x] = \sum_{y} Pr[X = x, Y = y].$$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Recall Marginal Distribution:

$$Pr[X = x] = \sum_{y} Pr[X = x, Y = y].$$

Similarly:

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Recall Marginal Distribution:

$$Pr[X = x] = \sum_{y} Pr[X = x, Y = y].$$

Similarly:

$$f_X(x) = \int f_{X,Y}(x,y) dy.$$

One defines a pair (X, Y) of continuous RVs by specifying $f_{X,Y}(x,y)$ for $x, y \in \mathfrak{R}$ where

$$f_{X,Y}(x,y)dxdy = \Pr[X \in (x, x + dx), Y \in (y + dy)].$$

The function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Example: Choose a point (*X*, *Y*) uniformly in the set $A \subset \Re^2$. Then

$$f_{X,Y}(x,y) = \frac{1}{|A|} \mathbf{1}\{(x,y) \in A\}$$

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh size ε and $Pr[X = m\varepsilon, Y = n\varepsilon] = f_{X,Y}(m\varepsilon, n\varepsilon)\varepsilon^2$.

Recall Marginal Distribution:

$$\Pr[X = x] = \sum_{y} \Pr[X = x, Y = y].$$

Similarly:

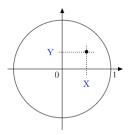
$$f_X(x) = \int f_{X,Y}(x,y) dy.$$

Sum "goes to" integral.

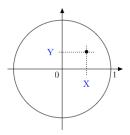
Pick a point (X, Y) uniformly in the unit circle.

Pick a point (X, Y) uniformly in the unit circle.

Example of Continuous (X, Y)Pick a point (X, Y) uniformly in the unit circle.

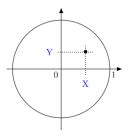


Pick a point (X, Y) uniformly in the unit circle.



Thus, $f_{X,Y}(x,y) = \frac{1}{\pi} \mathbf{1} \{ x^2 + y^2 \le 1 \}.$

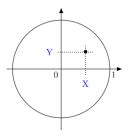
Example of Continuous (X, Y)Pick a point (X, Y) uniformly in the unit circle.



Thus,
$$f_{X,Y}(x,y) = \frac{1}{\pi} 1\{x^2 + y^2 \le 1\}$$
.
Consequently,

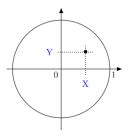
$$Pr[X > 0, Y > 0] =$$

Pick a point (X, Y) uniformly in the unit circle.



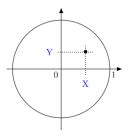
$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

Pick a point (X, Y) uniformly in the unit circle.



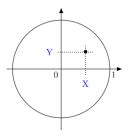
$$Pr[X > 0, Y > 0] = \frac{1}{4}$$
$$Pr[X < 0, Y > 0] =$$

Pick a point (X, Y) uniformly in the unit circle.



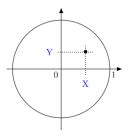
$$Pr[X > 0, Y > 0] = \frac{1}{4}$$
$$Pr[X < 0, Y > 0] = \frac{1}{4}$$

Pick a point (X, Y) uniformly in the unit circle.



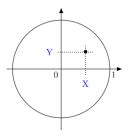
$$Pr[X > 0, Y > 0] = \frac{1}{4}$$
$$Pr[X < 0, Y > 0] = \frac{1}{4}$$
$$Pr[X^{2} + Y^{2} \le r^{2}] =$$

Pick a point (X, Y) uniformly in the unit circle.



$$Pr[X > 0, Y > 0] = \frac{1}{4}$$
$$Pr[X < 0, Y > 0] = \frac{1}{4}$$
$$Pr[X^{2} + Y^{2} \le r^{2}] = \frac{\pi r^{2}}{\pi}$$

Pick a point (X, Y) uniformly in the unit circle.

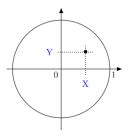


$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

$$Pr[X < 0, Y > 0] = \frac{1}{4}$$

$$Pr[X^{2} + Y^{2} \le r^{2}] = \frac{\pi r^{2}}{\pi} = r^{2}$$

Pick a point (X, Y) uniformly in the unit circle.



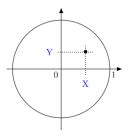
$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

$$Pr[X < 0, Y > 0] = \frac{1}{4}$$

$$Pr[X^{2} + Y^{2} \le r^{2}] = \frac{\pi r^{2}}{\pi} = r^{2}$$

$$Pr[X > Y] =$$

Pick a point (X, Y) uniformly in the unit circle.



$$Pr[X > 0, Y > 0] = \frac{1}{4}$$

$$Pr[X < 0, Y > 0] = \frac{1}{4}$$

$$Pr[X^{2} + Y^{2} \le r^{2}] = \frac{\pi r^{2}}{\pi} = r^{2}$$

$$Pr[X > Y] = \frac{1}{2}.$$

Independent Continuous Random Variables

Definition:

Definition: Continuous RVs X and Y independent if and only if

Definition: Continuous RVs X and Y independent if and only if

 $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem:

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y).

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y).

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y). **Proof:**

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y). **Proof:** Intervals: A = [x, x + dx], B = [y, y + dy].

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y). **Proof:** Intervals: A = [x, x + dx], B = [y, y + dy]. $Pr[X \in A, Y \in B] = Pr[X \in A] \times Pr[Y \in B]$

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y). **Proof:** Intervals: A = [x, x + dx], B = [y, y + dy]. $Pr[X \in A, Y \in B] = Pr[X \in A] \times Pr[Y \in B]$ $\approx f_X(x) \ dx \times f_Y(y) \ dy$

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y). **Proof:** Intervals: A = [x, x + dx], B = [y, y + dy].

$$Pr[X \in A, Y \in B] = Pr[X \in A] \times Pr[Y \in B]$$

$$\approx f_X(x) \ dx \times f_Y(y) \ dy$$

$$= f_X(x)f_Y(y) \ dxdy.$$

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y). **Proof:** Intervals: A = [x, x + dx], B = [y, y + dy].

$$Pr[X \in A, Y \in B] = Pr[X \in A] \times Pr[Y \in B]$$

$$\approx f_X(x) \ dx \times f_Y(y) \ dy$$

$$= f_X(x)f_Y(y) \ dxdy.$$

Definition: Continuous RVs X and Y independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B], \forall A, B.$$

Theorem: Continuous RVs X and Y independent if and only if

$$f_{X,Y}(x,y)=f_X(x)f_Y(y).$$

Note: $f_X(x)$ ($f_Y(y)$) is (marginal) distribution of X (Y). **Proof:** Intervals: A = [x, x + dx], B = [y, y + dy].

$$Pr[X \in A, Y \in B] = Pr[X \in A] \times Pr[Y \in B]$$

$$\approx f_X(x) \ dx \times f_Y(y) \ dy$$

$$= f_X(x)f_Y(y) \ dxdy.$$

Thus, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$.

Definition:

Definition: Continuous RVs X_1, \ldots, X_n are mutually independent if

Definition: Continuous RVs X_1, \ldots, X_n are mutually independent if

 $Pr[X_1 \in A_1, \ldots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \ldots, A_n.$

Definition: Continuous RVs X_1, \ldots, X_n are mutually independent if

 $Pr[X_1 \in A_1, \ldots, X_n \in A_n] = Pr[X_1 \in A_1] \cdots Pr[X_n \in A_n], \forall A_1, \ldots, A_n.$

Theorem:

Definition: Continuous RVs X_1, \ldots, X_n are mutually independent if

$$\Pr[X_1 \in A_1, \ldots, X_n \in A_n] = \Pr[X_1 \in A_1] \cdots \Pr[X_n \in A_n], \forall A_1, \ldots, A_n.$$

Theorem: Continuous RVs X_1, \ldots, X_n are mutually independent if and only if

Definition: Continuous RVs X_1, \ldots, X_n are mutually independent if

$$\Pr[X_1 \in A_1, \ldots, X_n \in A_n] = \Pr[X_1 \in A_1] \cdots \Pr[X_n \in A_n], \forall A_1, \ldots, A_n.$$

Theorem: Continuous RVs X_1, \ldots, X_n are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Definition: Continuous RVs X_1, \ldots, X_n are mutually independent if

$$\Pr[X_1 \in A_1, \ldots, X_n \in A_n] = \Pr[X_1 \in A_1] \cdots \Pr[X_n \in A_n], \forall A_1, \ldots, A_n.$$

Theorem: Continuous RVs X_1, \ldots, X_n are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Proof:

Definition: Continuous RVs X_1, \ldots, X_n are mutually independent if

$$\Pr[X_1 \in A_1, \ldots, X_n \in A_n] = \Pr[X_1 \in A_1] \cdots \Pr[X_n \in A_n], \forall A_1, \ldots, A_n.$$

Theorem: Continuous RVs X_1, \ldots, X_n are mutually independent if and only if

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Proof: As in the discrete case.

Conditional Density: $f_{X|Y}(x, y)$.

Conditional Density: $f_{X|Y}(x, y)$.

Conditional Probability: $Pr[X \in A | Y \in B] = \frac{Pr[X \in A, Y \in B]}{Pr[Y \in B]}$

Conditional Density: $f_{X|Y}(x, y)$. Conditional Probability: $Pr[X \in A | Y \in B] = \frac{Pr[X \in A, Y \in B]}{Pr[Y \in B]}$ $Pr[X \in [x, x + dx] | Y \in [y, y + dy]] = \frac{f_{X,Y}(x,y)dxdy}{f_Ydy}$

Conditional Density: $f_{X|Y}(x, y)$. Conditional Probability: $Pr[X \in A | Y \in B] = \frac{Pr[X \in A, Y \in B]}{Pr[Y \in B]}$ $Pr[X \in [x, x + dx] | Y \in [y, y + dy]] = \frac{f_{X,Y}(x,y)dxdy}{f_Y dy}$ $f_{X|Y}(x, y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{X,Y}(x,y)}{\int_{-\infty}^{+\infty} f_{X,Y}(x,y)dx}$

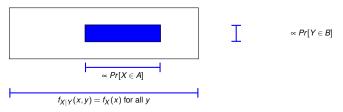
Conditional Density: $f_{X|Y}(x, y)$. Conditional Probability: $Pr[X \in A | Y \in B] = \frac{Pr[X \in A, Y \in B]}{Pr[Y \in B]}$ $Pr[X \in [x, x + dx] | Y \in [y, y + dy]] = \frac{f_{X,Y}(x,y)dxdy}{f_Y dy}$ $f_{X|Y}(x, y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{X,Y}(x,y)}{\int_{-\infty}^{+\infty} f_{X,Y}(x,y)dx}$

Corollary: For independent random variables, $f_{X|Y}(x, y) = f_X(x)$.

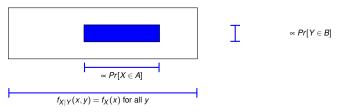
Uniform on a rectangle?

Uniform on a rectangle? Independent?

Uniform on a rectangle? Independent?

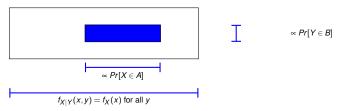


Uniform on a rectangle? Independent?



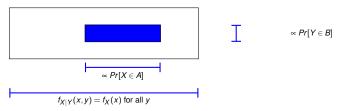
Also: $Pr[X \in A, Y \in B] \propto$ Area of rectangle $\propto Pr[X \in A] \times Pr[Y \in B]$.

Uniform on a rectangle? Independent?



Also: $Pr[X \in A, Y \in B] \propto$ Area of rectangle $\propto Pr[X \in A] \times Pr[Y \in B]$. Independent!

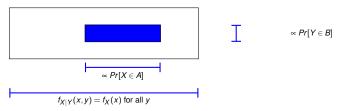
Uniform on a rectangle? Independent?



Also: $Pr[X \in A, Y \in B] \propto$ Area of rectangle $\propto Pr[X \in A] \times Pr[Y \in B]$. Independent!

Uniform on a circle?

Uniform on a rectangle? Independent?

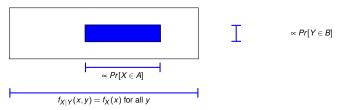


Also: $Pr[X \in A, Y \in B] \propto$ Area of rectangle $\propto Pr[X \in A] \times Pr[Y \in B]$. Independent!

Uniform on a circle? Independent?

Independent Random Variables?

Uniform on a rectangle? Independent?



Also: $Pr[X \in A, Y \in B] \propto$ Area of rectangle $\propto Pr[X \in A] \times Pr[Y \in B]$. Independent!

Uniform on a circle? Independent?

 $f_{X|Y}(x,5)$ $f_{X|Y}(x,0)$ Not independent!

1. pdf:

1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.

Continuous Probability 1

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. *U*[*a*,*b*]:

Continuous Probability 1

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.

3.
$$U[a,b]$$
: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\};$

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.
2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^{x} f_X(y) dy$.

3.
$$U[a,b]$$
: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$

- 1. pdf: $Pr[X \in (x, x+\delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. *Expo*(λ):

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbf{1}\{x \ge 0\};$

Continuous Probability 1

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$

4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbb{1}\{x \ge 0\}; F_X(x) = \mathbb{1} - \exp\{-\lambda x\} \text{ for } x \le 0.$

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. Expo (λ) : $f_X(x) = \lambda \exp\{-\lambda x\} \mathbb{1}\{x \ge 0\}; F_X(x) = 1 - \exp\{-\lambda x\} \text{ for } x \le 0.$
- 5. Target:

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbb{1}\{x \ge 0\}; F_X(x) = 1 - \exp\{-\lambda x\} \text{ for } x \le 0.$
- 5. Target: $f_X(x) = 2x1\{0 \le x \le 1\};$

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b]: $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$
- 4. $Expo(\lambda)$: $f_X(x) = \lambda \exp\{-\lambda x\} \mathbb{1}\{x \ge 0\}; F_X(x) = \mathbb{1} - \exp\{-\lambda x\} \text{ for } x \le 0.$
- 5. Target: $f_X(x) = 2x1\{0 \le x \le 1\}$; $F_X(x) = x^2$ for $0 \le x \le 1$.
- 6. Joint pdf: $Pr[X \in (x, x + \delta), Y = (y, y + \delta)) = f_{X,Y}(x, y)\delta^2$.
 - 6.1 Conditional Distribution: $f_{X|Y}(x,y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$. 6.2 Independence: $f_{X|Y}(x,y) = f_X(x)$

Continuous RVs are similar to discrete RVs (break into intervals.)

- Continuous RVs are similar to discrete RVs (break into intervals.)
- Think that $X \approx x$ with probability $f_X(x)\varepsilon$

- Continuous RVs are similar to discrete RVs (break into intervals.)
- Think that $X \approx x$ with probability $f_X(x)\varepsilon$
- Sums become integrals,

- Continuous RVs are similar to discrete RVs (break into intervals.)
- Think that $X \approx x$ with probability $f_X(x)\varepsilon$
- Sums become integrals,