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Calculus

δ δ δ δ

Riemann Sum/Integral:
∫ b

a f (x)dx = limδ→0 ∑i δ f (ai)
“Area is defined as rectangles and add up some

thin ones.”

Derivative (Rate of change):
F ′(x) = limh→0

F (x+h)−F (x)
h .

“Rise over run of close together points.”

Fundamental Theorem: F (b)−F (a) =
∫ b

a F ′(x)dx .
“Area (F (·)) under f (x) grows at x , F ′(x), by f (x)”

Thus F ′(x) = f (x).
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Uniformly at Random in [0,1].

Choose a real number X , uniformly at random in [0,1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any x ∈ [0,1], one has Pr [X = x ] = 0.

How should we then describe ‘choosing uniformly at random in [0,1]’?

Here is the way to do it:

Pr [X ∈ [a,b]] = b−a,∀0 ≤ a ≤ b ≤ 1.

Makes sense: b−a is the fraction of [0,1] that [a,b] covers.
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Poll

FX (x) = Pr [X ≤ x ]

.

fX (x) = lim
δ→0

Pr [X ∈ (x ,x +δ )]

δ

What is true?
(A) FX (x) =

∫
∞

−∞
fX (y)dy

(B)
∫

∞

−∞
fX (x) = 1

(C) FX (x) =
∫ x
−∞

f (y)dy .
(D) f (x) = F ′

X (x).
(E)

∫
∞

−∞
FX (x)dx = 1.

(F)
∫

∞

−∞
xf (x)dx =

∫
∞

−∞
(1−F (x))dx .

(A) False. limits wrong. (B) cuz probability distribution.
(C) “sums up probability of rectangles”, e.g. calculus.
(D) calculus, fundamental theorem.

(F) is true since
∫

∞

−∞
xf (x)dx =

∫
∞

−∞
F (x)dx = E [X ].

Next lecture.
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Uniformly at Random in [0,1].

Let [a,b] denote the event that the point X is in the interval [a,b].

Pr [[a,b]] =
length of [a,b]
length of [0,1]

=
b−a

1
= b−a.

Intervals like [a,b]⊆ Ω= [0,1] are events.
More generally, events in this space are unions of intervals.
Example: the event A - “within 0.2 of 0 or 1” is A = [0,0.2]∪ [0.8,1].
Thus,

Pr [A] = Pr [[0,0.2]]+Pr [[0.8,1]] = 0.4.

More generally, if An are pairwise disjoint intervals in [0,1], then

Pr [∪nAn] := ∑
n

Pr [An].

Many subsets of [0,1] are of this form. Thus, the probability of those
sets is well defined. We call such sets events.
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Instead, start with Pr [A] for some events A.
Event A = interval, or union of intervals.
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Pr [X ≤ x ] = 1 for .2x > 1.

Define F (x) = Pr [X ≤ x ].

Then we have Pr [X ∈ (a,b]] = Pr [X ≤ b]−Pr [X ≤ a] = F (b)−F (a).

Thus, F (·) specifies the probability of all the events!
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An alternative view is to define f (x) = d
dx F (x) = 1{x ∈ [0,1]}. Then
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a
f (x)dx .

Thus, the probability of an event is the integral of f (x) over the event:

Pr [X ∈ A] =
∫

A
f (x)dx .
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Uniformly at Random in [0,1].

Think of f (x) as describing how
one unit of probability is spread over [0,1]: uniformly!

Then Pr [X ∈ A] is the probability mass over A.

Observe:

▶ This makes the probability automatically additive.

▶ We need f (x)≥ 0 and
∫

∞

−∞
f (x)dx = 1.
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Uniformly at Random in [0,1].

Discrete Approximation: Fix N ≫ 1 and let ε = 1/N.

Define Y = nε if (n−1)ε < X ≤ nε for n = 1, . . . ,N.

Then |X −Y | ≤ ε and Y is discrete: Y ∈ {ε,2ε, . . . ,Nε}.

Also, Pr [Y = nε] = 1
N for n = 1, . . . ,N.

Thus, X is ‘almost discrete.’

Calculus view: Pr [Y = nε] is area of rectangle in Riemann sum.
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Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫

∞

−∞
f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞

f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.
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Another Nonuniform Choice at Random in [0,1].

This figure shows yet a different choice of f (x)≥ 0 with∫
∞
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f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, Pr [X ∈ [0,1/3]] =
∫ 1/3

0 4xdx = 2
[
x2]1/3

0 = 2
9 .

Thus, Pr [X ∈ [0,1/3]] = Pr [X ∈ [2/3,1]] = 2
9 and

Pr [X ∈ [1/3,2/3]] = 5
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General Random Choice in ℜ

Let F (x) be a nondecreasing function with F (−∞) = 0 and F (+∞) = 1.

Define X by Pr [X ∈ (a,b]] = F (b)−F (a) for a < b. Also, for
a1 < b1 < a2 < b2 < · · ·< bn,

Pr [X ∈ (a1,b1]∪ (a2,b2]∪ (an,bn]]

= Pr [X ∈ (a1,b1]]+ · · ·+Pr [X ∈ (an,bn]]

= F (b1)−F (a1)+ · · ·+F (bn)−F (an).

Let f (x) = d
dx F (x). Then,

Pr [X ∈ (x ,x + ε]] = F (x + ε)−F (x)≈ f (x)ε.

F (x) is cumulative distribution function (cdf) of X

f (x) is the probability density function (pdf) of X .

When F and f correspond RV X : FX (x) and fX (x).
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Thus, the pdf is the ‘local probability by unit length.’

It is the ‘probability density.’



Pr [X ∈ (x ,x + ε)]

An illustration of Pr [X ∈ (x ,x + ε)]≈ fX (x)ε:

Thus, the pdf is the ‘local probability by unit length.’

It is the ‘probability density.’



Pr [X ∈ (x ,x + ε)]

An illustration of Pr [X ∈ (x ,x + ε)]≈ fX (x)ε:

Thus, the pdf is the ‘local probability by unit length.’

It is the ‘probability density.’



Pr [X ∈ (x ,x + ε)]

An illustration of Pr [X ∈ (x ,x + ε)]≈ fX (x)ε:

Thus, the pdf is the ‘local probability by unit length.’

It is the ‘probability density.’



Pr [X ∈ (x ,x + ε)]

An illustration of Pr [X ∈ (x ,x + ε)]≈ fX (x)ε:

Thus, the pdf is the ‘local probability by unit length.’

It is the ‘probability density.’



Discrete Approximation

Fix ε ≪ 1 and let Y = nε if X ∈ (nε,(n+1)ε].

Thus, Pr [Y = nε] = FX ((n+1)ε)−FX (nε).

Note that |X −Y | ≤ ε and Y is a discrete random variable.

Also, if fX (x) = d
dx FX (x), then FX (x + ε)−FX (x)≈ fX (x)ε.

Hence, Pr [Y = nε]≈ fX (nε)ε.

Thus, we can think of X of being almost discrete with
Pr [X = nε]≈ fX (nε)ε.
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Example: CDF, pre-poll

Example: hitting random location on gas tank.

Random location on circle.

y

1

What is probability of being within y of the center, for non-negative
y ≤ 1?

(A) 1.
(B) 0.
(C)

∫ y
0 (2πy)dy

(D) y2.

(D) Next slide.
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Example: CDF
Example: hitting random location on gas tank.

Random location on circle.

y

1

Random Variable: Y distance from center.
Probability within y of center:

Pr [Y ≤ y ] =
area of small circle
area of dartboard

=
πy2

π
= y2.

Hence,

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0 ≤ y ≤ 1
1 for y > 1
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Calculation of event with dartboard..

Probability between .5 and .6 of center?

Recall CDF.

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0 ≤ y ≤ 1
1 for y > 1

Pr [0.5 < Y ≤ 0.6] = Pr [Y ≤ 0.6]−Pr [Y ≤ 0.5]
= FY (0.6)−FY (0.5)
= .36− .25
= .11
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PDF.

Example: “Dart” board.

Recall that

FY (y) = Pr [Y ≤ y ] =


0 for y < 0
y2 for 0 ≤ y ≤ 1
1 for y > 1

fY (y) = F ′
Y (y) =

 0 for y < 0
2y for 0 ≤ y ≤ 1
0 for y > 1

The cumulative distribution function (cdf) and probability distribution
function (pdf) give full information.

Use whichever is convenient.
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Exponential derivation:Poll.
Pr [X = i] = (1−p)i−1p.

Let p = λ/n. and Y = X/n.

What is true?

(A) X ∼ G(p)
(B) Pr [X > i] = (1−p)i .
(C) Pr [Y > i/n] = (1−λ/n)i .
(D) Pr [Y > y ] = (1−λ/n)ny .
(E) limn→∞(1−λ/n)ny = e−λy .

(A) True by definition.
(B) Pr [X > i] = (1−p)i at least i coin flips fail.
(C) True, definition of Y
(D) True, y = i/n means i = ny .
(E) (1−λ/n)ny = ((1−λ/n)n/λ )λy

and limn→∞(1− λ

n )
n/λ = e.

The limit as n → ∞ of Y has Pr [Y > y ] = e−λy .

Pr [Y > y ] is defined as “Survival function.”
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Expo(λ )
“Limit of geometric.”

From last slide: S(t) = Pr [X > t ] = e−λ t for t > 0.
Note: fX (x) = F ′(t) = (1−S(t))′ =−S′(t).

The exponential distribution with parameter λ > 0 is defined by
fX (x) = λe−λx1{x ≥ 0}

FX (x) =
{

0, if x < 0
1−e−λx , if x ≥ 0.
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Continuous Random Variables

Continuous random variable X , specified by

1. FX (x) = Pr [X ≤ x ] for all x .

Cumulative Distribution Function (cdf).
Pr [a < X ≤ b] = FX (b)−FX (a)
1.1 0 ≤ FX (x)≤ 1 for all x ∈ ℜ.
1.2 FX (x)≤ FX (y) if x ≤ y .

2. Or fX (x) , where FX (x) =
∫ x
−∞

fX (u)du or fX (x) =
d(FX (x))

dx .
Probability Density Function (pdf).
Pr [a < X ≤ b] =

∫ b
a fX (x)dx = FX (b)−FX (a)

2.1 fX (x)≥ 0 for all x ∈ ℜ.
2.2

∫
∞

−∞
fX (x)dx = 1.

Recall that Pr [X ∈ (x ,x +δ )]≈ fX (x)δ .
X “takes” value nδ , for n ∈ Z , with Pr [X = nδ ] = fX (nδ )δ
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A Picture

The pdf fX (x) is a nonnegative function that integrates to 1.

The cdf FX (x) is the integral of fX .

Pr [x < X < x +δ ]≈ fX (x)δ

Pr [X ≤ x ] = Fx (x) =
∫ x

−∞

fX (u)du
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Multiple Continuous Random Variables

One defines a pair (X ,Y ) of continuous RVs by specifying fX ,Y (x ,y)
for x ,y ∈ ℜ where

fX ,Y (x ,y)dxdy = Pr [X ∈ (x ,x +dx),Y ∈ (y +dy)].

The function fX ,Y (x ,y) is called the joint pdf of X and Y .

Example: Choose a point (X ,Y ) uniformly in the set A ⊂ ℜ2. Then

fX ,Y (x ,y) = 1
|A|1{(x ,y) ∈ A}

where |A| is the area of A.

Interpretation. Think of (X ,Y ) as being discrete on a grid with mesh
size ε and Pr [X = mε,Y = nε] = fX ,Y (mε,nε)ε2.

Recall Marginal Distribution:

Pr [X = x ] = ∑y Pr [X = x ,Y = y ].

Similarly:

fX (x) =
∫

fX ,Y (x ,y)dy .

Sum “goes to” integral.
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Example of Continuous (X ,Y )

Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =

1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =

1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =

πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π

= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =

1
2
.



Example of Continuous (X ,Y )
Pick a point (X ,Y ) uniformly in the unit circle.

Thus, fX ,Y (x ,y) = 1
π

1{x2 +y2 ≤ 1}.

Consequently,

Pr [X > 0,Y > 0] =
1
4

Pr [X < 0,Y > 0] =
1
4

Pr [X2 +Y 2 ≤ r2] =
πr2

π
= r2

Pr [X > Y ] =
1
2
.



Independent Continuous Random Variables

Definition: Continuous RVs X and Y independent if and only if

Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B],∀A,B.

Theorem: Continuous RVs X and Y independent if and only if

fX ,Y (x ,y) = fX (x)fY (y).

Note: fX (x) (fY (y)) is (marginal) distribution of X (Y ).

Proof: Intervals: A = [x ,x +dx ], B = [y ,y +dy ].

Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]×Pr [Y ∈ B]
≈ fX (x) dx × fY (y) dy
= fX (x)fY (y) dxdy .

Thus, fX ,Y (x ,y) = fX (x)fY (y).
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Conditional density.

Conditional Density: fX |Y (x ,y).

Conditional Probability: Pr [X ∈ A|Y ∈ B] = Pr [X∈A,Y∈B]
Pr [Y∈B]

Pr [X ∈ [x ,x +dx ]|Y ∈ [y ,y +dy ]] = fX ,Y (x ,y)dxdy
fY dy

fX |Y (x ,y) =
fX ,Y (x ,y)

fY (y) =
fX ,Y (x ,y)∫+∞

−∞ fX ,Y (x ,y)dx

Corollary: For independent random variables, fX |Y (x ,y) = fX (x).
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Independent Random Variables?

Uniform on a rectangle?

Independent?

∝ Pr [Y ∈ B]

∝ Pr [X ∈ A]

fX |Y (x ,y) = fX (x) for all y

Also: Pr [X ∈ A,Y ∈ B] ∝ Area of rectangle ∝ Pr [X ∈ A]×Pr [Y ∈ B].

Independent!

Uniform on a circle? Independent?

fX |Y (x , .5)

fX |Y (x ,0) Not independent!
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Summary

Continuous Probability 1

1. pdf:

Pr [X ∈ (x ,x +δ ]] = fX (x)δ .

2. CDF: Pr [X ≤ x ] = FX (x) =
∫ x
−∞

fX (y)dy .

3. U[a,b]: fX (x) = 1
b−a 1{a ≤ x ≤ b};FX (x) = x−a

b−a for a ≤ x ≤ b.

4. Expo(λ ):
fX (x) = λ exp{−λx}1{x ≥ 0};FX (x) = 1− exp{−λx} for x ≤ 0.

5. Target: fX (x) = 2x1{0 ≤ x ≤ 1};FX (x) = x2 for 0 ≤ x ≤ 1.

6. Joint pdf: Pr [X ∈ (x ,x +δ ),Y = (y ,y +δ )) = fX ,Y (x ,y)δ 2.

6.1 Conditional Distribution: fX |Y (x ,y) =
fX ,Y (x ,y)

fY (y) .
6.2 Independence: fX |Y (x ,y) = fX (x)
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▶ Think that X ≈ x with probability fX (x)ε
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