Outline

Linear Regression: wrapup.
How do | love e?
Balls in Bins.

Birthday.
Coupon Collector.
Load balancing.

Poisson Distribution: Sum of two Poissons is Poisson.



Estimation Error
We saw that the LLSE of Y given X is

cov(X,Y

LIY|X] =V = E[Y]+ a(X))(X—E[X]).

How good is this estimator?
Or what is the mean squared estimation error?

We find
EY ~ LIYIX]P) = E(Y — E[Y] — (cov(X. ¥)/var(X))(X ~ E[X]))’]
— EL(Y - EIY])?) -2 00 T Ly - EIvx- £
O T PEIX - EXP)
B cov(X,Y)?
=var(Y)- “ar(X)

Without observations, the estimate is E[Y]. The error is var(Y). Observing X
reduces the error.

Dividing by var(Y), one gets reduction: %‘/’;Rf) (corr(X,Y))? =



LR: Another Figure

cov(X,Y)

L[Y|X]=Y =E[Y]+ var(X)

(X — E[X]).

(Xrn l/n)

E[Y]

E1X]
. E _ eov(X,Y
"’lope - 'rlm’[X]
Note that
» the LR line goes through (E[X], E[Y])

> its slope is 22T,




Quadratic Regression
Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable
Q[Y|X] = a+bX+cX?
where a, b, ¢ are chosen to minimize E[(Y —a— bX — cX?)?].
Derivation: We set to zero the derivatives w.r.t. a,b,c. We get
0 = E[Y-—a—bX—cX?=E[Y]-a—bE[X]-cE[X?]
0 E[(Y — a— bX — cX?)X] = E[XY] - a— bE[X?] — cE[X?]
0 = E[(Y—a—bX—cX?)X? =E[X?Y]-aE[X?] - bE[X?] — cE[X*]

We solve these three equations in the three unknowns (a, b, ¢).

For linear regression, L[Y|X], approach gives:

cov(X Y)

L[Y|X]=Y =E[Y]+ var(X)

(X — E[X]).



How do | love e?

Let me count the ways.

What is e?
For a function f(x) = e, f'(x) = e*.

Another view: % =y.
More money you have the faster you gain money.
More rabbits there are, the more rabbits you get.
More people with a disease the faster it grows:

Epidemiologists:reproduction rate, R.
Discrete version: x,.1 — Xn = A(Xn) = Xn.
Xp=2", for x5 = 1.



How do | love e?
For a function f(x) = e, f'(x) = e*.
What is this f/(x)?
Slope of the tangent line.

, Nf(x—|—1/n)—f(x)_f(x—|—1/n)—f(x)
Fix) ~ x+1/n—x 1/n

for large n.
And f(x) = &%, f(x+1/n) = &t/" = eXe'/", s0

e (e -1) _ eln-1

X
1/n € 1/n ~e

f'(x) ~

el/n—1 |
- ~1 = ¢e""=1/n = e~ (1+1/n)".
1/n

Continuous compounded interest: rate r.

break time into intervals of size 1/n.
(A+r/m)" = (A +r/n)"VN) — e’



Balls in bins

One throws m balls into n > m bins.




Balls in bins

One throws m balls into n > m bins.

e

(' Prlbin k] = !
n

1 2 '\_ n
Collision

Theorem:
Pr[no collision] ~ exp{—g}, for large enough n.



Balls in bins

Theorem:
Pr[no collision] =~ exp{—%}, for large enough n.
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04l Pr(collision] > 1/2
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Balls in bins

Theorem: ,
Pr[no collision] ~ exp{ %=}, for large enough n.

In particular, Pr[no collision] ~ 1/2 for m?/(2n) ~In(2), i.e.,

m=+/2In(2)n=1.2/n.

E.g., 1.2v20~5.4.
Roughly, Pr[collision] ~ 1/2 for m=+/n. (¢ 9%~ 0.6.)



The Calculation.
A, = no collision when jth ball is placed in a bin.
PriAilAi_1N---n A =(1-51).
no collision = Ay N---NAm.

Product rule:
PrlAiN---NAn] = Pr[A1]Pr[Az|A1] - PrlAm|A1 NN Am_1]

= Pr[no collision] = (1 - :7) (1 B m; : ) '

In(Pr[no collision]) = Y In(1— lr(]) ~ Y (-=)®

Hence,

_tmm-1)®  m?
n 2 T 2n
() We used In(1 —¢) ~ —e for || < 1.
D142+ 4m-1=(m-1)m/2.



Approximation

-025 ' ' T n ' ' '
-0.2 -0.15 -0.1 -0.05 [} 0.05 0.1 0.15 0.2

exp{—X}:1—X+%X2+--~%1—X7 for |x] <« 1.

Hence, —x ~ In(1 — x) for |x| <« 1.



Today’s your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr[collision] ~ 1/2 if m~1.21/365 ~ 23.
If m= 60, we find that
02
2 x 365

2
Pr[nocollision]zexp{—%}— xp{— } ~0.007.

If m= 366, then Pr[no collision] = 0. (No approximation here!)



Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:
X = Number of collisions between pairs of balls.

or number of pairs i and j where ball / and ball j are in same bin.
Xjj = 1{balls i,j in same bin}
X=¥jXj
E[Xj] = Prloalls i,j in same bin] = -
Ball i in some bin, ball j chooses that bin with probability 1/n.

ElX|= "G50~ .
Form:\f, EX]=1/2
Markov: PriX > c] < EX.

Prix>1] <X —1/2




Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Prshare a checksum] < 10-3?

Claim: b >2.9In(m)+9.
Proof:
Let n = 2P be the number of checksums.
We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 —m?/(2n). Hence,
Pr[no collision] ~ 1 —107% < m?/(2n) ~ 1073
& 2n~ mP10% & 26+ ~ m?210

< b+1~=10+2logy(m) =~ 10+2.9In(m).

Note: logs(x) = logo(e) In(x) =~ 1.44In(x).



Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,
(a) Pr[miss one specific item] ~ e~ 7

(b) Pr[miss any one of the items] < ne~ 7.

BRIAN

WILSON




Coupon Collector Problem: Analysis.

Event A, = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1 — ,17)

Fail the second time: (1—1)
And so on ... for m times. Hence,

PriAm]

In(Pr[Am])

Pr{Am]

~
~

1 1
(1_E)><...

For pm = % we need around nin2 ~ 0.69n boxes.



Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: E, = fail to get playerk’ , fork=1,...,n
Probability of failing to get at least one of these n players:

pZ:PI’[E1UE2~--UEn]

How does one estimate p? Union Bound:
p=Prl[EfUE;---UE;] < Pr[E1] + Pr|Ez] - - - Pr|Ep].

PriEd]~e 7.k=1,....n.
Plug in and get

33

p<ne



Collect all cards?

Thus,

m
n .

Pr[missing at least one card] < ne™

Hence,
Pr[missing at least one card] < p when m > nIn(g).
Toget p=1/2,set m=nin(2n).

(p<ne"7 <ne (P < n(B)<p)
E.g., =102 = m=530;n=10% = m=7600.



Time to collect coupons

X-time to get n coupons.
Xj - time to get first coupon. Note: X; =1. E(X;) =1.
Xo - time to get second coupon after getting first.

|

Pr[“get second coupon”|“got milk first coupon”] = =+

E[Xz]? Geometric | | | = E[Xp] = & = 47 = ;1.
Pr[“getting ith coupon|“got i — 1rst coupons’] = U1 — n=is1
EXl =5 = mtmi=12...n
n n n
EIX] = EDXi]+-+EXa ="+ttt
X] = EDGl+ DG =D T ]

1 1
— n(1+§+...+B):;nH(n)xn(Inn—H’)



Review: Harmonic sum

H(n)—1+1—|— +l~/n1dx—ln(n)
N 2 n~Jox '

1/2

—2 1/4 /5

0 1 2 3 4 ;1 li) &
A good approximation is

H(n) ~ In(n) 4y where v~ 0.58 (Euler-Mascheroni constant).



Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.
Max load?
n. Uh Oh!

Max load with probability > 1 — 67
§ =  for today. cis 1 or 2.



Balls in bins.

For each of n balls, choose random bin: X; balls in bin i.
Pr[X; > K] < Y.sc[n,|s|=« Prlballs in S chooses bin /]
From Union Bound: Pr[U;Aj] <Y; Pr[Aj]

Prballs in S chooses bin i] = (%)k and (}) subsets S.

en = (0)(3)
< %) -7

Choose k, so that Pr(X; > k] < .
1

Priany X; > k] <nx & =1 — maxload <kwp. >1-1



Solving for k

PriX; > k] < & <1/n??
What is upper bound on max-load k?

Lemma: Max load is ©(log n) with probability > 1 — ,17
k! > r? for k =2elogn
(Recall k! > (X))

— <0 < (k)"
If logn > 1, then k = 2elog n suffices.
Also: k = ©(logn/loglog n) suffices as well.
kk — ne.
Actually Max load is ©(log n/loglog n) w.h.p.
(W.h.p. - means with probability at least 1 — O(1/n°) for today.)
Better than variance based methods...



Sum of Poisson Random Variables.
For X = P(L), PriX =i]=e %4

/!
For X = P(A) and Y = P(u), what is distribution X+ Y?
Pf[X+ Y= k] = e_}”_“ Z/Jr/':k )Ll:ijlll
Poission? Yes.
What parameter? A + u.

Why?
P(2) is limit n — e of B(n,A/n).

Recall Derivation:
break interval into n intervals
and each has arrival with probability 1 /n.

Now:
arrival for X happens with probability A /n
arrival for Y happens with probability i/n

So, we get limit n — oo is B(n, (A + w)/n).

Details: both could arrive with probability A /n?.
But this goes to zero as n — oo.
(Like A2/n? in previous derivation)



Discrete Probability.

Probability Space: Q, Pr: Q —[0,1], Lpeq Pr(w) = 1.
Events: AC Q, Pr[A] = Y yeca Prio].

Pr{AU B| = Pr[A] + Pr[B] — Pr[An B]
Simple Total Probability: Pr[B] = Pr[An B]+ Pr[AnB].
Conditional Probability: Pr[A|B] = 24422,
Simple Product Rule: Pr[An B] = Pr[A|B]Pr[B].
Bayes Rule: Pr[A|B] = 154078

Inference:
Have one of two coins. Flip coin, which coin do you have?
Got positive test result. What is probability you have disease?



Random Variables
Random Variables: X: Q — R.

Distribution: Pr[X = a] = ¥.¢. x(w)=a Pr(®)

X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = ¥ yecq X(®)Pr(o).

Linearity: E[X + Y] = E[X]+ E[Y].
Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?

For independent X, Y, Var(X+ Y) = Var(X) + Var(Y).

Also: Var(cX) = ¢ Var(X) and Var(X + b) = Var(X).

Poisson: X ~ P(A)  PriX=i]=e 4.
E(X)=A, Var(X)=A.

Binomial: X ~ B(n,p)  PriX=i= (7)p'(1—p)"'
E(X) = np, Var(X) = np(1—p)

Uniform: X ~ U{1,...,n} ~ Vie[1,n],PriX=1i=1.
E[X] = 251, Var(X) = 1. |

Geometric: X ~ G(p) PriX=i=(1-p) 'p
E(X)= 5, Var(X) = £

Note: Probability Mass Function = Distribution.



Concentration: Law Of Large Numbers.
Markov: For a non-negative r.v. X, Pr[X > c] < %

Chebyshev: For a random variable X: Pr[|X — E(X)| > ¢] < 22 X)

epsilon?

For X = 21240 |\where X; are indentical and independent.
Var(X) = YarXi)
X)),

Law of Large Numbers: A, = M
Cuz:

Pr[|An— E[An]| > €] < %ﬁ% _ var(Xy)

ne2
For X; with Var(X;) = ¢2.
What is the confidence interval for A, for confidence .957?
For what € is Pr[|A,— E[Ap]| > €] < .05 =67

€= ﬁ using Chebyshev.

e~ log } using “Chernoff.”
“z-score” from AP statistics.
FYI: Chebyshev uses E[X?], Chernoff uses E[eX]. Both use Markov.




Joint Distributions and Estimation.

Distribution for X, Y: Pr[X=a,Y = b).
Marginals: PriX=al=Y,Pr[X=a,Y = b].

Conditioning:
Pr[X = a‘ Y = b] = 7Pr[;§_[:ya’:\;]:b]
E[Y|X]=Ypbx Pr[Y = b|X].

Estimation minimizing Mean Squared Error:
E[X] for X. Error is var(X).

E[Y|X] for Y if you know X.
Best linear function.

L[Y|X] = E[Y]+corr(X,Y)/var(Y \/T'
Reduces mean squared error Y by (corr(X, Y))? by var(Y).
Warning: assume knowing joint distribution.

Statistics: sampling....Law of Large Numbers.
Computer Science: large data, other functions “Deep Networks.”



