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Estimation: Expectation and Mean Squared Error.

“Best” guess about Y , is E [Y ].
If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:

Let Ŷ := Y −E [Y ].
Then, E [Ŷ ] = E [Y −E [Y ]] = E [Y ]−E [Y ] = 0.
So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ] + E [Y ]−a)2]

= E [(Ŷ + c)2] with c = E [Y ]−a

= E [Ŷ 2 + 2Ŷ c + c2] = E [Ŷ 2] + 2E [Ŷ c] + c2

= E [Ŷ 2] + 0 + c2 ≥ E [Ŷ 2].

Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.
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Then, E [Ŷ ] = E [Y −E [Y ]] = E [Y ]−E [Y ] = 0.
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Let Ŷ := Y −E [Y ].
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Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.



Estimation: Expectation and Mean Squared Error.

“Best” guess about Y , is E [Y ].
If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:
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So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ] + E [Y ]−a)2]

= E [(Ŷ + c)2]
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= E [Ŷ 2] + 2E [Ŷ c] + c2
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Let Ŷ := Y −E [Y ].
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Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.



Estimation: Expectation and Mean Squared Error.

“Best” guess about Y , is E [Y ].
If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:
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Conditional Expectation

Definition Let X and Y be RVs on Ω.

The conditional expectation of
Y given X is defined as

E [Y |X ] = g(X )

where
g(x) := E [Y |X = x ] := ∑

y
yPr [Y = y |X = x ].

Fact
E [Y |X = x ] = ∑

ω

Y (ω)Pr [ω|X = x ].

Proof: E [Y |X = x ] = E [Y |A] with A = {ω : X (ω) = x}.
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Properties of CE

E [Y |X = x ] = ∑
y

yPr [Y = y |X = x ]

Theorem
(a) X ,Y independent⇒ E [Y |X ] = E [Y ];

(b) E [aY + bZ |X ] = aE [Y |X ] + bE [Z |X ];

(c) E [Yh(X )|X ] = h(X )E [Y |X ],∀h(·);
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CE = MMSE (Minimum Mean Squared Estimator)

Theorem
E [Y |X ] is the ‘best’ guess about Y based on X .

Specifically, it is the function g(X ) of X that

minimizes E [(Y −g(X ))2].
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Theorem CE = MMSE

g(X ) := E [Y |X ] is the function of X that minimizes E [(Y −g(X ))2].
Proof: Recall: Expectation of r.v. mimimizes mean squared error.

Sample space X = x : so E [Y |X = x ] minimizes mean squared
error. .
Proof:
Let h(X ) be any function of X . Then

E [(Y −h(X ))2] = E [(Y −g(X ) + g(X )−h(X ))2]

= E [(Y −g(X ))2] + E [(g(X )−h(X ))2]

+2E [(Y −g(X ))(g(X )−h(X ))].

But,

E [(Y −g(X ))(g(X )−h(X ))] = 0 by the projection property.

Thus, E [(Y −h(X ))2]≥ E [(Y −g(X ))2].
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Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is not funny.)

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

In this example, d = 4.
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Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact:

Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.

Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p).

Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn.

Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1

=⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

Fact: Number of tweets X = ∑
∞

n=1 Xn where Xn is tweets in level n.
Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Going Viral

An easy extension: Assume that everyone has an independent
number Di of friends with E [Di ] = d . Then, the same fact holds.

To see this, note that given Xn = k , and given the numbers of friends
D1 = d1, . . . ,Dk = dk of these Xn people, one has
Xn+1 = B(d1 + · · ·+ dk ,p). Hence,

E [Xn+1|Xn = k ,D1 = d1, . . . ,Dk = dk ] = p(d1 + · · ·+ dk ).

Thus, E [Xn+1|Xn = k ,D1, . . . ,Dk ] = p(D1 + · · ·+ Dk ).

Consequently, E [Xn+1|Xn = k ] = E [p(D1 + · · ·+ Dk )] = pdk .

Finally, E [Xn+1|Xn] = pdXn, and E [Xn+1] = pdE [Xn].

We conclude as before.
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Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald’s Identity

Assume that X1,X2, . . . and Z are independent, where

Z takes values in {0,1,2, . . .}

and E [Xn] = µ for all n ≥ 1.

Then,
E [X1 + · · ·+ XZ ] = µE [Z ].

Proof:

E [X1 + · · ·+ XZ |Z = k ] = µk .

Thus, E [X1 + · · ·+ XZ |Z ] = µZ .

Hence, E [X1 + · · ·+ XZ ] = E [µZ ] = µE [Z ].
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Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: E [Y −E [Y |X ]h(X )|X ] = 0; E [E [Y |X ]] = E [Y ]

I Applications:

I Viral Propagation.
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)



Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: E [Y −E [Y |X ]h(X )|X ] = 0; E [E [Y |X ]] = E [Y ]

I Applications:

I Viral Propagation.
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)



Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: E [Y −E [Y |X ]h(X )|X ] = 0;

E [E [Y |X ]] = E [Y ]

I Applications:

I Viral Propagation.
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)



Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: E [Y −E [Y |X ]h(X )|X ] = 0; E [E [Y |X ]] = E [Y ]

I Applications:

I Viral Propagation.
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)



Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: E [Y −E [Y |X ]h(X )|X ] = 0; E [E [Y |X ]] = E [Y ]

I Applications:

I Viral Propagation.
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)



Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: E [Y −E [Y |X ]h(X )|X ] = 0; E [E [Y |X ]] = E [Y ]

I Applications:

I Viral Propagation.
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)



Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: E [Y −E [Y |X ]h(X )|X ] = 0; E [E [Y |X ]] = E [Y ]

I Applications:

I Viral Propagation.
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)



Linear Estimation: Preamble

Thus, if we want to guess the value of Y , we choose E [Y ].

Now assume we make some observation X related to Y .

How do we use that observation to improve our guess about Y?

The idea is to use a function g(X ) of the observation to estimate Y .

The “right” function is E [X |Y ].

A simpler function?

“Simplest” function is linear: g(X ) = a + bX .

What is the best linear function? That is our next topic.
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Linear Regression: Motivation

Example 1: 100 people.

Let (Xn,Yn) = (height, weight) of person n, for n = 1, . . . ,100:

E[Y ]

Y

X

The blue line is Y =−114.3 + 106.5X . (X in meters, Y in kg.)

Best linear fit: Linear Regression.
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Example 2: 15 people.

We look at two attributes: (Xn,Yn) of person n, for n = 1, . . . ,15:

The line Y = a + bX is the linear regression.
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LLSE

LLSE [Y |X ] - best guess for Y given X .

Theorem
Consider two RVs X ,Y with a given distribution Pr [X = x ,Y = y ].
Then,

L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 1:
Y − Ŷ = (Y −E [Y ])− cov(X ,Y )

var [X ] (X −E [X ]). E [Y − Ŷ ] = 0 by linearity.

Also, E [(Y − Ŷ )X ] = 0, after a bit of algebra. (next slide)

Combine brown inequalities: E [(Y − Ŷ )(c + dX )] = 0 for any c,d .
Since: Ŷ = α + βX for some α,β , so ∃c,d s.t. Ŷ −a−bX = c + dX .
Then, E [(Y − Ŷ )(Ŷ −a−bX )] = 0,∀a,b. Now,

E [(Y −a−bX )2] = E [(Y − Ŷ + Ŷ −a−bX )2]

= E [(Y − Ŷ )2] + E [(Ŷ −a−bX )2] + 0≥ E [(Y − Ŷ )2].

This shows that E [(Y − Ŷ )2]≤ E [(Y −a−bX )2], for all (a,b).
Thus Ŷ is the LLSE.
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Since: Ŷ = α + βX for some α,β , so ∃c,d s.t. Ŷ −a−bX = c + dX .
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This shows that E [(Y − Ŷ )2]≤ E [(Y −a−bX )2], for all (a,b).
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Since: Ŷ = α + βX for some α,β , so ∃c,d s.t. Ŷ −a−bX = c + dX .
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Y − Ŷ = (Y −E [Y ])− cov(X ,Y )

var [X ] (X −E [X ]). E [Y − Ŷ ] = 0 by linearity.
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L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 1:
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A Bit of Algebra

Y − Ŷ = (Y −E [Y ])− cov(X ,Y )
var [X ] (X −E [X ]).

Hence, E [Y − Ŷ ] = 0. We want to show that E [(Y − Ŷ )X ] = 0.

Note that
E [(Y − Ŷ )X ] = E [(Y − Ŷ )(X −E [X ])],

because E [(Y − Ŷ )E [X ]] = 0.

Now,

E [(Y − Ŷ )(X −E [X ])]

= E [(Y −E [Y ])(X −E [X ])]− cov(X ,Y )

var [X ]
E [(X −E [X ])(X −E [X ])]

=(∗) cov(X ,Y )− cov(X ,Y )

var [X ]
var [X ] = 0.

(∗) Recall that cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] and
var [X ] = E [(X −E [X ])2].
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E [(Y − Ŷ )(X −E [X ])]

= E [(Y −E [Y ])(X −E [X ])]− cov(X ,Y )

var [X ]
E [(X −E [X ])(X −E [X ])]

=(∗) cov(X ,Y )− cov(X ,Y )

var [X ]
var [X ] = 0.

(∗) Recall that cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] and
var [X ] = E [(X −E [X ])2].



A Bit of Algebra
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Now,
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LLSE

Theorem
Consider two RVs X ,Y with a given distribution Pr [X = x ,Y = y ].
Then,

L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 1:
Y − Ŷ = (Y −E [Y ])− cov(X ,Y )

var [X ] (X −E [X ]). E [Y − Ŷ ] = 0 by linearity.

Also, E [(Y − Ŷ )X ] = 0, after a bit of algebra. (See next slide.)

Combine brown inequalities: E [(Y − Ŷ )(c + dX )] = 0 for any c,d .
Since: Ŷ = α + βX for some α,β , so ∃c,d s.t. Ŷ −a−bX = c + dX .
Then, E [(Y − Ŷ )(Ŷ −a−bX )] = 0,∀a,b. Now,

E [(Y −a−bX )2] = E [(Y − Ŷ + Ŷ −a−bX )2]

= E [(Y − Ŷ )2] + E [(Ŷ −a−bX )2] + 0≥ E [(Y − Ŷ )2].

This shows that E [(Y − Ŷ )2]≤ E [(Y −a−bX )2], for all (a,b).
Thus Ŷ is the LLSE.
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This shows that E [(Y − Ŷ )2]≤ E [(Y −a−bX )2], for all (a,b).
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Since: Ŷ = α + βX for some α,β , so ∃c,d s.t. Ŷ −a−bX = c + dX .
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Then, E [(Y − Ŷ )(Ŷ −a−bX )] = 0,∀a,b. Now,

E [(Y −a−bX )2] = E [(Y − Ŷ + Ŷ −a−bX )2]
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This shows that E [(Y − Ŷ )2]≤ E [(Y −a−bX )2], for all (a,b).
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Since: Ŷ = α + βX for some α,β , so ∃c,d s.t. Ŷ −a−bX = c + dX .
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L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 1:
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A Bit of Algebra

Y − Ŷ = (Y −E [Y ])− cov(X ,Y )
var [X ] (X −E [X ]).

Hence, E [Y − Ŷ ] = 0. We want to show that E [(Y − Ŷ )X ] = 0.

Note that
E [(Y − Ŷ )X ] = E [(Y − Ŷ )(X −E [X ])],

because E [(Y − Ŷ )E [X ]] = 0.

Now,

E [(Y − Ŷ )(X −E [X ])]

= E [(Y −E [Y ])(X −E [X ])]− cov(X ,Y )

var [X ]
E [(X −E [X ])(X −E [X ])]

=(∗) cov(X ,Y )− cov(X ,Y )

var [X ]
var [X ] = 0.

(∗) Recall that cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] and
var [X ] = E [(X −E [X ])2].
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We want to show that E [(Y − Ŷ )X ] = 0.
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E [(Y − Ŷ )(X −E [X ])]

= E [(Y −E [Y ])(X −E [X ])]− cov(X ,Y )

var [X ]
E [(X −E [X ])(X −E [X ])]

=(∗) cov(X ,Y )− cov(X ,Y )

var [X ]
var [X ] = 0.

(∗) Recall that cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] and
var [X ] = E [(X −E [X ])2].



A Bit of Algebra
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Hence, E [Y − Ŷ ] = 0. We want to show that E [(Y − Ŷ )X ] = 0.
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Estimation Error

We saw that the LLSE of Y given X is

L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

How good is this estimator?
Or what is the mean squared estimation error?

We find

E [|Y −L[Y |X ]|2] = E [(Y −E [Y ]− (cov(X ,Y )/var(X ))(X −E [X ]))2]

= E [(Y −E [Y ])2]−2
cov(X ,Y )

var(X )
E [(Y −E [Y ])(X −E [X ])]

+(
cov(X ,Y )

var(X )
)2E [(X −E [X ])2]

= var(Y )− cov(X ,Y )2

var(X )
.

Without observations, the estimate is E [Y ]. The error is var(Y ). Observing X
reduces the error.
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L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

How good is this estimator?
Or what is the mean squared estimation error?

We find

E [|Y −L[Y |X ]|2] = E [(Y −E [Y ]− (cov(X ,Y )/var(X ))(X −E [X ]))2]

= E [(Y −E [Y ])2]−2
cov(X ,Y )

var(X )
E [(Y −E [Y ])(X −E [X ])]

+(
cov(X ,Y )

var(X )
)2E [(X −E [X ])2]

= var(Y )− cov(X ,Y )2

var(X )
.

Without observations, the estimate is E [Y ]. The error is var(Y ). Observing X
reduces the error.



Estimation Error

We saw that the LLSE of Y given X is

L[Y |X ] = Ŷ = E [Y ] +
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= E [(Y −E [Y ])2]−2
cov(X ,Y )

var(X )
E [(Y −E [Y ])(X −E [X ])]

+(
cov(X ,Y )

var(X )
)2E [(X −E [X ])2]

= var(Y )− cov(X ,Y )2

var(X )
.

Without observations, the estimate is E [Y ]. The error is var(Y ). Observing X
reduces the error.
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Ω
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L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ])

and
E [|Y −L[Y |X ]|2] = var(Y )− cov(X ,Y )2

var(X )
.

Here is a picture when E [X ] = 0,E [Y ] = 0:
Dimensions correspond to sample points, uniform sample space.

Vector Y at dimension ω is 1√
Ω

Y (ω)



Estimation Error: A Picture
We saw that

L[Y |X ] = Ŷ = E [Y ] +
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We find:

E [X ] = 0;E [Y ] = 0;E [X 2] = 1/2;E [XY ] = 1/2;

var [X ] = E [X 2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1/2;

LR: Ŷ = E [Y ] +
cov(X ,Y )

var [X ]
(X −E [X ]) = X .
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LR: Ŷ = E [Y ] +
cov(X ,Y )

var [X ]
(X −E [X ]) = X .



Linear Regression Examples

Example 2:

We find:

E [X ] = 0;E [Y ] = 0;E [X 2] = 1/2;

E [XY ] = 1/2;

var [X ] = E [X 2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1/2;
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LR: Ŷ = E [Y ]+
cov(X ,Y )

var [X ]
(X −E [X ]) =−X .



Linear Regression Examples

Example 3:

We find:

E [X ] = 0;E [Y ] = 0;E [X2] = 1/2;E [XY ] = −1/2;

var [X ] = E [X2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = −1/2;
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Quadratic Regression

Let X ,Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable

Q[Y |X ] = a + bX + cX 2

where a,b,c are chosen to minimize E [(Y −a−bX −cX 2)2].

Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E [Y −a−bX −cX 2] = E [Y ]−a−bE [X ]−cE [X 2]

0 = E [(Y −a−bX −cX 2)X ] = E [XY ]−a−bE [X 2]−cE [X 3]

0 = E [(Y −a−bX −cX 2)X 2] = E [X 2Y ]−aE [X 2]−bE [X 3]−cE [X 4]

We solve these three equations in the three unknowns (a,b,c).
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Summary

Linear Regression

Mean Squared: E [Y ] is best mean squared estimator for Y .
MMSE: E [Y |X ] is best mean squared estimator for Y given X .
Linear Regression: L[Y |X ] = E [Y ] + cov(X ,Y )

var(X ) (X −E [X ])

Can do other forms of functions as well, e.g., quadratic.

Warning: assumes you know distribution.
Sample Points “are” distribution in this class.
Statistics: Fix the assumption above.
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