Today

Estimation.
MMSE: Best Function that predicts X from Y.
Conditional Expectation.
Finish Linear Regression:
Best linear function prediction of Y given X.

Applications to random processes.

Estimation: Expectation and Mean Squared Error.

“Best” guess about Y, is E[Y].
If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E[(Y — a)?] is a= E[Y].
Proof:
Let V:= Y —E[Y].
Then, g[?] = E[Y - E[Y]| = E[Y] - E[Y]=0.
So, E[Yc] =0,Vc. Now,
E[(Y-aP] = E[(Y-E[Y]+E[Y]-a)?]
= E[(Y+c)|withc=E[Y]-a
= E[V?+2Vc+c?| = E[V?]+2E[Yc]+c?
= E[V3+0+c2>E[V2.

Hence, E[(Y —a)?] > E[(Y — E[Y])3],Va. 0

Estimation: Preamble

Thus, if we want to guess the value of Y, we choose E[Y].
Now assume we make some observation X related to Y.
How do we use that observation to improve our guess about Y?

Review

Definitions Let X and Y be RVs on Q.
» Joint Distribution: Pr{X =x,Y = y]
> Marginal Distribution: Pr[X =x] =Y, PriX=x,Y =y]

» Conditional Distribution: Pr[Y = y|X = x] = X XxY=11

PriX=x]

Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional expectation of
Y given X is defined as

E[YIX]=9(X)

where
g(x):=E[Y|X=x] ::ZyPr[Y:y\X:x]A
y

Fact
E[Y|X=x]=Y Y(w)Pr{o|X = x].

Proof: E[Y|X = x] = E[Y|Al with A= {0 : X(®) = x}. i

Properties of CE
ElYIX=x]=Y yPriY =y|X =x]
y

Theorem
a) X, Y independent = E[Y|X] = E[Y];

(
(b) E[aY +bZ|X] = aE[Y|X]+ bE[Z|X];
(c) E[Y(X)|X] = h(X)E[Y|X].7h(-);
(d) E[h(X)E[Y[X]] = E[A(X)Y],Vh(-);
(e) E[E[Y|X]] = E[Y].
Proof:

(a),(b) Obvious

(c) E[Yh(X)|X =x]= Z Y(@)h(X(w))Prio|X = X]

=Y Y(w)h(x)Pr{o|X = x] = h(X)E[Y|X = x]




Properties of CE
E[YIX=x]=Y yPrlY =y|X =x]
y

Theorem

(a )X7YindependentéE[Y\X]:E[Y];
(b) E[aY +bZ|X] = aE[Y|X] + bE[Z|X];
(©) E[Yh(X)|X] = h(X)E[Y|X],Vh(-);

(d) E[(X)E[Y|X]] = E[n(X) Y], Vh(-);
(e) E[ETYIX]] = E[Y].

Proof: (continued)
d) E[A(X)E[Y|X]] = ):h(x)E[Y|X = X]Pr[X = x]

=Y h(x)Y yPr[Y = y|X = x]Pr[X = x]
X iz
:Zh(x)ZyPr[X:x,y:y]

=Y K yPr[X X,y =yl =E[RX)Y].

Xy

Properties of CE

E[Y|X=x]=Y yPr[Y =y|X =x]
Iz

Theorem

a) X, Y independent = E[Y|X] = E[Y];
) ElaY +bZ|X] = aE[Y|X]+ bE[Z|X];
) E[Yh(X)|X] = h(X)E[Y|X],vh(-);
;E[h( JE[Y|X]] = E[h(X) Y],¥h(-);

(
(
E
(e) E[E[YIX]] = E[Y].

b
c
d
e

Proof: (continued)
(e) Let h(X)=1in(d).

Properties of CE

Theorem

a) X, Y independent = E[Y|X] = E[Y];
ElaY + bZ|X] = aE[Y|X]+ bE[Z|X];
E[Yh(X)|X] = h(X)E[Y|X],Vh();
E[A(X)E[Y|X]] = E[N(X) Y], Vh();

(a)
(
E
(e) E[E[Y|X]] = E[Y].

b
9
d
e

Note that (d) says that
E[(Y — E[Y|XDh(X)|X] =

Note: one view is that the estimation error Y — E[Y|X] is orthogonal
to every function h(X) of X.

This the projection property. Won't discuss projection property in this
offering.

CE = MMSE (Minimum Mean Squared Estimator)

Theorem
E[Y|X] is the ‘best’ guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].

E[Y|X]
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CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes E[(Y — g(X))?].
Proof: Recall: Expectation of r.v. mimimizes mean squared error.

Sample space X = x: so E[Y|X = x] minimizes mean squared
error. 0.
Proof:
Let h(X) be any function of X. Then
E[(Y=h(X)?] = E[(Y—g(X)+g(X)—h(X))]
= E[(Y—g(X))’]+E(g(X) ~ h(X))?]
F2E[(Y = g(X))(g(X) — h(X))].

But,
E[(Y —g(X))(g(X) — h(X))] = 0 by the projection property.
Thus, E[(Y — h(X))?] > E[(Y — g(X))3]. O

Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is not funny.)

You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

[copof[op ec]x=s

‘O ® O OHO o e O||. o e .‘Xt:

In this example, d = 4.




Application: Going Viral

[Cor o] [Cp ) nms

|O ® O O"O o e O||. o e .|AV|:5

Fact: Number of tweets X =Y _; X, where X, is tweets in level n.
Then, E[X] < «iff pd < 1.

Proof:
Given X, = k, X1 = B(kd,p). Hence, E[X,.1|Xn = k] = kpd.

Thus, E[Xpy1|Xn] = pdX,. Consequently, E[X,] = (pd)"1,n>1.
If pd <1, then E[X; +--+Xp] < (1 —pd) ™' = E[X] < (1 —pd)~".

If pd > 1, then for all C one can find n s.t.
E[X]> E[X1+---+Xq] > C.

In fact, one can show that pd > 1 = Pr[X =] > 0.

Application: Going Viral

[0 @0 ofooec]|[eoc e e]u-=5

An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy = dy,..., Dk = di of these X, people, one has
Xni1=B(dy+---+dk,p). Hence,

E[Xn+1‘xn:k-,D1 =dy,...,Dg :dk] :p(d1 +A.4+dk)_
Thus, E[Xn+1 ‘Xn =k,Dy,..., Dk] = p(D1 +--+ Dk)
Consequently, E[Xp,.1|Xn = k] = E[p(D1 +--- + Dx)] = pdk.
Finally, E[Xp.1]|Xn] = pdXn, and E[X;.1] = pdE[Xp).
We conclude as before.

Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that X1, X,... and Z are independent, where

Z takes values in {0,1,2,...}

and E[X,] =pu foralln> 1.

Then,
E[Xi+---4+ Xz] = LE[Z].

Proof:

E[Xi+---+Xz|Z = k] = uk.

Thus, E[X) + -4+ Xz|Z] = nZ.

Hence, E[Xj +---+ Xz] = E[uZ] = puE[Z].

Summary

‘ Conditional Expectation ‘

> Definition: E[Y|X]:=Y, yPr[Y = y|X = x]
> Properties: E[Y — E[Y|X]h(X)|X] =0; E[E[Y|X]] = E[Y]
» Applications:

> Viral Propagation.
> Wald

» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)

Linear Estimation: Preamble

Thus, if we want to guess the value of Y, we choose E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?
The idea is to use a function g(X) of the observation to estimate Y.
The “right” function is E[X|Y].

A simpler function?

“Simplest” function is linear: g(X) = a-+ bX.

What is the best linear function? That is our next topic.

Linear Regression: Motivation

Example 1: 100 people.
Let (X, Yn) = (height, weight) of person n, for n=1,...,100:

Fitted Line
Weight kg = - 114.3 +{106.5 Height M

Weight kg

13 14 15 15 17
Height M

The blue lineis Y = -114.3+106.5X. (X in meters, Y in kg.)
Best linear fit: Linear Regression.




Motivation

Example 2: 15 people.
We look at two attributes: (Xp, Yp) of person n, forn=1,..., 15:

|

)

a—+ h_\';

~

LLSE

LLSE[Y|X] - best guess for Y given X.
Theorem
Consider two RVs X, Y with a given distribution Pr[X = x,Y = y].

Then
’ o cov(X.Y) ,
Proof 1: LIY|X]=Y =E[Y]+ ar(x) (X —E[X]).

Y-V =(Y—E[Y]) - LGP (X E[X]).  E[Y V]~ 0by linearity.

Also, E[(Y — V)X] = 0. after a bit of algebra. (next slide)
Combine brown inequalities: £[(Y — ¥)(c-+ dX)] =0 for any ¢,d.

A Bit of Algebra

Y=V = (Y= ElY]) - a5 X — EIX).
Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] = 0.

Note that R R
E[(Y = Y)X]=E[(Y - Y)(X - E[X])],

because E[(Y — V)E[X]] = 0.
Now,

E[(Y - ¥)(X - E[X])]

Since: ¥ = a+BX for some o, B, so 3c,d s.t. ¥ —a—bX =c+dX. cov(X,Y)
1 Then, E[(Y — V)(Y —a— bX)] =0,va.b. Now, =E[(Y - E[Y])(X E[X])]meE[(XfE[X])(XfE[X])]
- X E[(Y - a—b{()z] = E[(AY* Y+ ¥—a-bx)? . =0 cov(X,Y) - cov(X. Y) var[X]=0. O
e g g = E[(Y = V2] +E[(V —a—bX)2]+0 > E[(Y — V). var([X]
& « )
; oy o X2 () Recall that cov(X.Y) = E[(X — E[X])(Y — E[Y])] and
The line Y = a+ bX is the linear regression. I:Iusssgoi\;vfhtge&g[é?/ YY) < El(Y —a-bX)7), forall (a,b). O var[X] = E[(X — E[X])?].
LLSE A Bit of Algebra Estimation Error

Theorem Y-V =(Y—E[Y])- Cci/‘;(r)[(xp (X - E[X]). We saw that the LLSE of Y given X is

i RVs X, Y with a given distribution Pr(X = x, Y = ). . .
gﬁgﬁfder two RVs X, Y with a glver:::\l/s(t)r(lbl.:/t;on "X =x " Hence, E[Y — Y] = 0. We want to show that E[(Y — Y)X] = 0. LyY|IX)= ¥ =E[Y]+ CC"/‘;E')((;(;/) (X - E[X]).

LY|X] = ¥ = E[Y]+ 22 (X — E[X)). Note that A X

Proof 1: var(X) E[(Y-Y)X] = E[(Y - V)(X - E[X])],

Y-V =(Y-E[Y])- XN (X _E[X]). E[Y - V] =0 by linearity.

var[X]
Also, E[(Y — Y)X] = 0. after a bit of algebra. (See next slide.)

Combine brown inequalities: £[(Y — ¥)(c+dX)] = 0 for any ¢,d.
Since: Y = a+ X for some a,,s0 3¢, d s.t. Y —a—bX=c+dX.
Then, E[(Y —Y)(Y—a—bX)] =0,va,b. Now,

E[(Y—a—bX)?|=E[(Y- Y+ V—a—bX)3
= E[(Y - V)| +E[(Y —a—bX)?|+0 > E[(Y - V)?].

This shows that E[(Y — V)2] < E[(Y —a— bX)?], for all (a, b).

Thus ¥ is the LLSE. O

because E[(Y — V)E[X]] =0.
Now,

E[(Y - ¥)(X - E[X])]

— £y - E(x - £p0) - S e - Epayc- £pay
=0 cov(X,Y) - %)[()’(]Y)var[X] =0. O

() Recall that cov(X, V) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].

How good is this estimator?
Or what is the mean squared estimation error?

We find
EQ|Y = LIY|X]]?] = E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))]

- cov(X,Y)
= EL(Y — EIYI)?] 27y ECY — EY)(X - EX)]

cov(X,Y)
( var(X)
cov(X,Y)?

var(X)

E[(X - EX)]

=var(Y)—

Without observations, the estimate is E[Y]. The error is var(Y). Observing X
reduces the error.




Estimation Error: A Picture
We saw that

. cov(X,Y)
LYIXI=Y =B+ =5 (X —EXD)

and 2
E[lY - L[Y|X]]2] = var(Y) - %

Here is a picture when E[X] =0,E[Y] =0:
Dimensions correspond to sample points, uniform sample space.

cov(X,Y)?
var(X)

[> = var(y)

[l = var(y)

. cou(X,V)?
’ var(X)
1

Vector Y at dimension o is ﬁY(w)

Linear Regression Examples

Example 1:

Height
B0

Linear Regression ,

55

50

45

Linear Regression Examples

Example 2:

X

We find:
E[X] = 0;E[Y] = 0; E[X?] = 1/2, E[XY] =1/2;
var[X] = E[X?] — E[X]? = 1/2;cov(X, Y) = E[XY] — E[X]E[Y] = 1/2;

LR: ¥ = E[Y]+%)[()’(]Y)(X—E[X]) —X.

Linear Regression Examples

Example 3:

We find:
E[X] =0;E[Y] = 0; E[X?] = 1/2, E[XY] = —1/2;

var[X] = E[X?] - E[X]? = 1/2;cov(X, Y) = E[XY] - E[X]E[Y] = —1/2;

cov(X,Y)
var[X]

LR: ¥ = E[Y]+ (X—E[X]) =—X.

Linear Regression Examples

Example 4:
v
1 o0 0 0
>
3 o -0 o IR
2 o ©
1 o 0
X
12 3 4 5
We find:

E[X]=3;E[Y] =2.5;E[X?] = (3/15)(1+ 22 + 3% + 42 + 52) = 11;
E[XY]=(1/15)(1 x 141 x24---+5x4) =84,

var[X] =11-9=2;cov(X,Y)=84-3x25=0.9;

0.9
-

LR: ¥ =25+ =2(X—3)=1.15+0.45X.

LR: Another Figure

slope = <2uXH)

Note that

» the LR line goes through (E[X], E[Y])

cov(X.Y)

> its slope is =Zm%y"




Quadratic Regression

Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable
Q[Y|X] = a+bX+cX?

where a,b, ¢ are chosen to minimize E[(Y —a— bX — cX?)?].
Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E[Y—a—bX—cX? =E[Y]—a—bE[X]-cE[X?]

0 = E[(Y—a—bX—cX?)X]=E[XY]—a—bE[X?]-cE[X?]

0 = E[(Y—a—bX—cX?)X? = E[X?Y]-aE[X?] — bE[X®] — cE[X*]

We solve these three equations in the three unknowns (a, b, c).

Summary

Linear Regression

Mean Squared: E[Y] is best mean squared estimator for Y.
MMSE: E[Y|X] is best mean squared estimator for Y given X.
Linear Regression: L[Y|X] = E[Y]+ c%%‘()y) (X —-E[X])

Can do other forms of functions as well, e.g., quadratic.

Warning: assumes you know distribution.
Sample Points “are” distribution in this class.
Statistics: Fix the assumption above.




