CS70

Coupon Collecting: Fun with harmonic numbers!



CS70

Coupon Collecting: Fun with harmonic numbers!
Memoryless Property.



CS70

Coupon Collecting: Fun with harmonic numbers!
Memoryless Property.

Law of the unconscious statistician. (Hmmm.)



CS70

Coupon Collecting: Fun with harmonic numbers!
Memoryless Property.
Law of the unconscious statistician. (Hmmm.)

Variance/ Covariance.
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Review: Harmonic sum

H(n)—1+1—|— +l~/n1dx—ln(n)
N 2 n~Jox '
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0 1 2 3 4 ;1 li) &
A good approximation is

H(n) ~ In(n) 4y where v~ 0.58 (Euler-Mascheroni constant).
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Consider this stack of cards (no gluel):

Li—

If each card has length 2, the stack can extend H(n) to the right of the
table. As nincreases, you can go as far as you want!



Paradox

par-a-dox
/'pera daks/

a statement or proposition that, despite sound (or apparently sound) reasoning from
acceptable premises, leads to a conclusion that seems senseless, logically
unacceptable, or self-contradictory.

"a potentially serious conflict between quantum mechanics and the general theory of
relativity known as the information paradox"

« aseemingly absurd or self-contradictory statement or proposition that when
investigated or explained may prove to be well founded or true.
"in a paradox, he has discovered that stepping back from his job has increased the
rewards he gleans from it"
synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency,

incongruity; More

« a situation, person, or thing that combines contradictory features or qualities.
“the mingling of deciduous trees with elements of desert flora forms a fascinating
ecological paradox"
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Stacking
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H(n+1)

nr=1—x
=c=1/(n+1)

l—z =z

The cards have width 2. Induction shows that the center of gravity
after n cards is H(n) away from the right-most edge.
Video.


https://www.youtube.com/watch?v=53FMsMHWcVs
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Poll.

Which is LOTUS?

(A) E[X] = ZXERange(X) 9(x)Pr[g(X) = g(x)]
(B) E[X] = ZXGRange(X) g(X)PF[X = X]

(C) E[X] = ZXERange(g) XPI’[Q(X) = X]
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Geometric Distribution.

Experiment: flip a coin with heads prob. p. until Heads.
Random Variable X: number of flips.

And distribution is:

(A) X ~G(p): PrIX=1=(1-p)'p.
(B) X~ B(p,n) : PriX =il = (7)p'(1 —p)"".

(A) Distribution of X ~ G(p): Pr[X =i1=(1-p)~'p.
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Geometric Distribution: Memoryless - Interpretation

PriX >n+m|X >n]=Pr[X>m],mn>0.

B A
TTT...TTTITTT..... T H

L3 =L =
T m

Pr[X > n+m|X > n] = Pr[A|B] = Pr[A] = Pr[X > m].
A’: is m coin tosses before heads.
A|B: m’more’ coin tosses before heads.

The coin is memoryless , therefore, so is X.
Independent coin: Pr[H| anyprevioussetofcointosses'] = p
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Geometric Distribution: Memoryless by derivation.

Let X be G(p). Then, for n> 0,

Pr[X > n] = Pr[ first nflips are T] = (1—p)".
Theorem

Pr(X>n+m|X > n|= Pr[X >m|,mn>0.

Proof:

Pr(X >n+mand X > n|
Pr(X > n
Pr[X >n+m]
Pr(X > n
a-p" m
a—pn (=P
PriX > m].

PriX >n+m|X > n
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Variance and Standard Deviation

Fact:

Indeed:

var(X)

var[X] = E[X?] - E[X]?.

E[(X - E[X])?]
E[X? —2XE[X]+ E[X]?)
E[X?] - 2E[X]E[X] + E[X]?, by linearity

= E[X?]-E[X]?.
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A simple example

This example illustrates the term ‘standard deviation.
Pr=10.5 T . el Pr=10.5

® ! O >

7
h—a I

Consider the random variable X such that

x_| p-o w.p. 1/2
| u+o, wp1/2

Then, E[X] = u and (X — E[X])? = 62. Hence,

var(X) = 6® and 6(X) = o.
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1 99, w.p.0.01.
Then
E[X] = —1x0.99+99x0.01=0.
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Exercise: How big can you make %?
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Uniform
Assume that PriX = i]= 1 forie {1,...,n}. Then

n. . 14,
E[X] = i:1/>< PriX=1i]= ”i;I

1n(n+1) _n+A
n 2 2

Also,

E[X?] = fﬁﬂw=ﬂ=1iﬁ
= =
_ %(n)(n“‘é)(n‘f‘z) _ 1 +3ré+ 2n27 as you can verify.
This gives

143n+2m (n+1)? n?—1
var(X)=——-y _(4): 12

(Sort of /% x2dx = %)
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Poll: fixed points.

What’s true?

(A) Xj and X; are independent.
(B) E[X;Xj] = Pr[XiX; =1]
(C >Pr[XX1f =
(D) X;
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Variance: binomial.

2 N ) n ; i
e = Y A(T)e -
i=0
= Really???!1##...

Too hard!

Ok.. fine.
Let’'s do something else.
Maybe not much easier...but there is a payoff.
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a b
= Y )Y axbx Pr[X=alPr[Y = b]
a b
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Poisson Distribution: Variance.

Definition Poisson Distribution with parameter A > 0

m

xzpuyﬁmw:mp%ﬁa%m>a

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with p=24/nas n— eo.
Mean: pn=A

Variance: p(1—p)n=21—212/n— A .

E(X?)? Var(X) = E(X?)— (E(X))? or E(X?) = Var(X) + E(X)?.
E(X?)=A+A%.



Covariance

Definition The covariance of X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])].



Covariance

Definition The covariance of X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Fact
cov(X,Y)= E[XY]— E[X]E[Y].



Covariance

Definition The covariance of X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Fact
cov(X,Y)= E[XY]— E[X]E[Y].

Proof:
Think about E[X] = E[Y] = 0. Just E[XY].



Covariance

Definition The covariance of X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Fact
cov(X,Y)= E[XY]— E[X]E[Y].

Proof:
Think about E[X] = E[Y] = 0. Just E[XY].



Covariance

Definition The covariance of X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Fact
cov(X,Y)= E[XY]— E[X]E[Y].

Proof:
Think about E[X] = E[Y] = 0. Just E[XY]. Clish.



Covariance

Definition The covariance of X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Fact
cov(X,Y)= E[XY]— E[X]E[Y].
Proof:
Think about E[X] = E[Y] = 0. Just E[XY]. Clish.

For the sake of completeness.



Covariance

Definition The covariance of X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Fact
cov(X,Y)= E[XY]— E[X]E[Y].
Proof:
Think about E[X] = E[Y] = 0. Just E[XY]. Clish.

For the sake of completeness.

E[(X — E[X])(Y — E[Y])] = E[XY — E[X]Y — XE[Y] + E[X]E[Y]]
= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]
= E[XY] - E[X]E[Y].
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Definition The correlation of X, Y, Cor(X,Y) is

cov(X,Y)

corr(X,Y): (X)o (V)"

Theorem: —1 < corr(X,Y) < 1.
Proof: Idea: (a— b)? >0 — & + b? > 2ab.

Simple case: E[X] = E[Y] =0 and E[X?] = E[Y?] =1.
Cor(X,Y) = E[XY].

E[(X — Y)?] = E[X?] + E[Y?] - 2E[XY] = 2(1 — E[XY]) > 0

— E[XY] <1.

E[(X+ Y)?] = E[X?] + E[Y2]+2E[XY] =2(1 + E[XY]) >

— E[XY] > 1.

Shifting and scaling doesn’t change correlation.
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Note that E[X] =0 and E[Y] =0 in these examples. Then
cov(X,Y) = E[XY].

When cov(X,Y) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X, Y) <0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X,Y) =0, we say that X and Y are uncorrelated.
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