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Time to collect coupons

X -time to get n coupons.

X1 - time to get first coupon. Note: X1 = 1. E(X1) = 1.

X2 - time to get second coupon after getting first.

Pr [“get second coupon”|“got milk

—- first coupon

”] = n−1
n

E [X2]? Geometric ! ! ! =⇒ E [X2] = 1
p = 1

n−1
n

= n
n−1 .

Pr [“getting i th coupon|“got i−1rst coupons”] = n−(i−1)
n = n−i+1

n

E [Xi ] = 1
p = n

n−i+1 , i = 1,2, . . . ,n.

E [X ] = E [X1] + · · ·+ E [Xn] =
n
n

+
n

n−1
+

n
n−2

+ · · ·+ n
1

= n(1 +
1
2

+ · · ·+ 1
n

) =: nH(n)≈ n(lnn + γ)
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Coupons: Poll

Collect n coupons!

What’s True?

(A) X1 = n
n = 1.

(B) X2 = n
n−1 .

(C) Pr [getting second|got first] = n−1
n .

(D) E [X2] = n
n−1 .

(E) E [Xn] = n.
(F) ∑i E [Xi ] = ∑

n−1
i=0

n
n−i

(G) ∑i E [Xi ] = ∑
n
i=1

1
n
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Review: Harmonic sum

H(n) = 1 +
1
2

+ · · ·+ 1
n
≈
∫ n

1

1
x

dx = ln(n).

.

A good approximation is

H(n)≈ ln(n) + γ where γ ≈ 0.58 (Euler-Mascheroni constant).
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Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend H(n) to the right of the
table. As n increases, you can go as far as you want!
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The cards have width 2. Induction shows that the center of gravity
after n cards is H(n) away from the right-most edge.
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Calculating E [g(X )]: LOTUS

Let Y = g(X ). Assume that we know the distribution of X .

We want to calculate E [Y ].

Method 1: We calculate the distribution of Y :

Pr [Y = y ] = Pr [X ∈ g−1(y)] where g−1(x) = {x ∈ℜ : g(x) = y}.

This is typically rather tedious!

Method 2: We use the following result.

Called “Law of the unconscious statistician.”
Theorem:

E [g(X )] = ∑
x

g(x)Pr [X = x ].

Proof:

E [g(X )] = ∑
ω

g(X (ω))Pr [ω] = ∑
x

∑
ω∈X−1(x)

g(X (ω))Pr [ω]

= ∑
x

∑
ω∈X−1(x)

g(x)Pr [ω] = ∑
x

g(x) ∑
ω∈X−1(x)

Pr [ω]

= ∑
x

g(x)Pr [X = x ].
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Poll.

Which is LOTUS?

(A) E [X ] = ∑x∈Range(X )
g(x)Pr [g(X ) = g(x)]

(B) E [X ] = ∑x∈Range(X )
g(x)Pr [X = x ]

(C) E [X ] = ∑x∈Range(g)
xPr [g(X ) = x ]
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Geometric Distribution.

Experiment: flip a coin with heads prob. p. until Heads.
Random Variable X : number of flips.

And distribution is:

(A) X ∼G(p) : Pr [X = i] = (1−p)i−1p.
(B) X ∼ B(p,n) : Pr [X = i] =

(n
i

)
pi (1−p)n−i .

(A) Distribution of X ∼G(p): Pr [X = i] = (1−p)i−1p.
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Geometric Distribution: Memoryless - Interpretation

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Pr [X > n + m|X > n] = Pr [A|B] = Pr [A′] = Pr [X > m].

A′: is m coin tosses before heads.
A|B: m ’more’ coin tosses before heads.

The coin is memoryless , therefore, so is X .
Independent coin: Pr [H|′anyprevioussetofcointosses′] = p
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Geometric Distribution: Memoryless by derivation.

Let X be G(p). Then, for n ≥ 0,

Pr [X > n] = Pr [ first n flips are T ] = (1−p)n.

Theorem

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Proof:

Pr [X > n + m|X > n] =
Pr [X > n + m and X > n]

Pr [X > n]

=
Pr [X > n + m]

Pr [X > n]

=
(1−p)n+m

(1−p)n = (1−p)m

= Pr [X > m].
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Variance

The variance measures the deviation from the mean value.

Definition: The variance of X is

σ
2(X ) := var [X ] = E [(X −E [X ])2].

σ(X ) is called the standard deviation of X .
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Variance and Standard Deviation

Fact:
var [X ] = E [X 2]−E [X ]2.

Indeed:

var(X ) = E [(X −E [X ])2]

= E [X 2−2XE [X ] + E [X ]2)

= E [X 2]−2E [X ]E [X ] + E [X ]2, by linearity
= E [X 2]−E [X ]2.
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A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable X such that

X =

{
µ−σ , w.p. 1/2
µ + σ , w.p. 1/2.

Then, E [X ] = µ and (X −E [X ])2 = σ2. Hence,

var(X ) = σ
2 and σ(X ) = σ .
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Example

Consider X with

X =

{
−1, w. p. 0.99
99, w. p. 0.01.

Then

E [X ] = −1×0.99 + 99×0.01 = 0.
E [X 2] = 1×0.99 + (99)2×0.01≈ 100.

Var(X ) ≈ 100 =⇒ σ(X )≈ 10.

Also,
E(|X |) = 1×0.99 + 99×0.01 = 1.98.

Thus, σ(X ) =
√

E [(X −E(X ))2] 6= E [|X −E [X ]|]!

Exercise: How big can you make σ(X )
E [|X−E [X ]|] ?
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Uniform
Assume that Pr [X = i] = 1

n for i ∈ {1, . . . ,n}. Then

E [X ] =
n

∑
i=1

i×Pr [X = i] =
1
n

n

∑
i=1

i

=
1
n

n(n + 1)

2
=

n + 1
2

.

Also,

E [X 2] =
n

∑
i=1

i2Pr [X = i] =
1
n

n

∑
i=1

i2

=
1
n

(n)(n + 1)(n + 2)

6
=

1 + 3n + 2n2

6
, as you can verify.

This gives

var(X ) =
1 + 3n + 2n2

6
− (n + 1)2

4
=

n2−1
12

.

(Sort of
∫ 1/2

0 x2dx = x3

3 .)
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Variance of geometric distribution.

X is a geometrically distributed RV with parameter p.

Thus, Pr [X = n] = (1−p)n−1p for n ≥ 1. Recall E [X ] = 1/p.

E [X 2] = p + 4p(1−p) + 9p(1−p)2 + ...

−

(1−p)E [X 2] =

−[

p(1−p) + 4p(1−p)2 + ...

]

pE [X 2] = p + 3p(1−p) + 5p(1−p)2 + ...

= 2(p + 2p(1−p) + 3p(1−p)2 + ..)

E [X ]!

−(p + p(1−p) + p(1−p)2 + ...)

Distribution.

pE [X 2] = 2E [X ]−1

= 2(
1
p

)−1 =
2−p

p

=⇒ E [X 2] = (2−p)/p2 and
var [X ] = E [X 2]−E [X ]2 = 2−p

p2 − 1
p2 = 1−p

p2 .

σ(X ) =

√
1−p
p ≈ E [X ] when p is small(ish).
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Fixed points.
Number of fixed points in a random permutation of n items.

“Number of student that get homework back.”

X = X1 + X2 · · ·+ Xn

where Xi is indicator variable for i th student getting hw back.

E(X 2) = ∑
i

E(X 2
i ) +∑

i 6=j
E(XiXj ).

=

n× 1
n

+

(n)(n−1)× 1
n(n−1)

= 1 + 1 = 2.

E(X 2
i ) = 1×Pr [Xi = 1] + 0×Pr [Xi = 0]

= 1
n

E(XiXj ) = 1×Pr [Xi = 1∩Xj = 1] + 0×Pr [“anything else’′]
= 1× (n−2)!

n! = 1
n(n−1)

Var(X ) = E(X 2)− (E(X ))2 = 2−1 = 1.
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Poll: fixed points.

What’s true?

(A) Xi and Xj are independent.
(B) E [XiXj ] = Pr [XiXj = 1]

(C) Pr [XiXj ] = (n−2)!
n!

(D) X 2
i = Xi .
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Variance: binomial.

E [X 2] =
n

∑
i=0

i2
(

n
i

)
pi (1−p)n−i .

= Really???!!##...

Too hard!

Ok.. fine.
Let’s do something else.
Maybe not much easier...but there is a payoff.
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Properties of variance.

1. Var(cX ) = c2Var(X ), where c is a constant.

Scales by c2.

2. Var(X + c) = Var(X ), where c is a constant.
Shifts center.

Proof:

Var(cX ) = E((cX )2)− (E(cX ))2

= c2E(X 2)−c2(E(X ))2 = c2(E(X 2)−E(X )2)

= c2Var(X )

Var(X + c) = E((X + c−E(X + c))2)

= E((X + c−E(X )−c)2)

= E((X −E(X ))2) = Var(X )
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Independent random variables.

Independent: P[X = a,Y = b] = Pr [X = a]Pr [Y = b]

Fact: E [XY ] = E [X ]E [Y ] for independent random variables.

E [XY ] = ∑
a

∑
b

a×b×Pr [X = a,Y = b]

= ∑
a

∑
b

a×b×Pr [X = a]Pr [Y = b]

= (∑
a

aPr [X = a])(∑
b

bPr [Y = b])

= E [X ]E [Y ]
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Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

Var(X + Y ) = Var(X ) + Var(Y ).

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E(X ) = 0 and E(Y ) = 0.

Then, by independence,

E(XY ) = E(X )E(Y ) = 0.

Hence,

var(X + Y ) = E((X + Y )2) = E(X 2 + 2XY + Y 2)

= E(X 2) + 2E(XY ) + E(Y 2) = E(X 2) + E(Y 2)

= var(X ) + var(Y ).
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Variance of Binomial Distribution.

Flip coin with heads probability p.

X - how many heads?

Xi =

{
1 if i th flip is heads
0 otherwise

E(X 2
i ) = 12×p + 02× (1−p) = p.

Var(Xi ) = p− (E(X ))2 = p−p2 = p(1−p).

p = 0 =⇒ Var(Xi ) = 0
p = 1 =⇒ Var(Xi ) = 0

X = X1 + X2 + . . .Xn.

Xi and Xj are independent: Pr [Xi = 1|Xj = 1] = Pr [Xi = 1].

Var(X ) = Var(X1 + · · ·Xn) = np(1−p).
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Poisson Distribution: Variance.

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with p = λ/n as n→ ∞.

Mean: pn = λ

Variance: p(1−p)n = λ −λ 2/n→ λ .

E(X 2)? Var(X ) = E(X 2)− (E(X ))2 or E(X 2) = Var(X ) + E(X )2.

E(X 2) = λ + λ 2.
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Covariance

Definition The covariance of X and Y is

cov(X ,Y ) := E [(X −E [X ])(Y −E [Y ])].

Fact
cov(X ,Y ) = E [XY ]−E [X ]E [Y ].

Proof:
Think about E [X ] = E [Y ] = 0. Just E [XY ]. ish.

For the sake of completeness.

E [(X −E [X ])(Y −E [Y ])] = E [XY −E [X ]Y −XE [Y ] + E [X ]E [Y ]]

= E [XY ]−E [X ]E [Y ]−E [X ]E [Y ] + E [X ]E [Y ]

= E [XY ]−E [X ]E [Y ].
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Correlation

Definition The correlation of X ,Y , Cor(X ,Y ) is

corr(X ,Y ) :
cov(X ,Y )

σ(X )σ(Y )
.

Theorem: −1≤ corr(X ,Y )≤ 1.
Proof: Idea: (a−b)2 > 0

→ a2 + b2 ≥ 2ab.

Simple case: E [X ] = E [Y ] = 0 and E [X 2] = E [Y 2] = 1.

Cor(X ,Y ) = E [XY ].

E [(X −Y )2] = E [X 2] + E [Y 2]−2E [XY ] = 2(1−E [XY ])≥ 0
→ E [XY ]≤ 1.

E [(X + Y )2] = E [X 2] + E [Y 2] + 2E [XY ] = 2(1 + E [XY ])≥ 0
→ E [XY ]≥−1.

Shifting and scaling doesn’t change correlation.
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Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.
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Examples of Covariance

E [X ] = 1×0.15 + 2×0.4 + 3×0.45 = 2.3
E [X 2] = 12×0.15 + 22×0.4 + 32×0.45 = 5.8
E [Y ] = 1×0.2 + 2×0.6 + 3×0.2 = 2
E [Y 2] = 1×0.2 + 4×0.6 + 9×0.2 = 4.4
E [XY ] = 1×0.05 + 1×2×0.1 + · · ·+ 3×3×0.2 = 4.85
cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = .25
var [X ] = E [X 2]−E [X ]2 = .51
var [Y ] = E [Y 2]−E [Y ]2 = .4
corr(X ,Y )≈ 0.55
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Properties of Covariance

cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] = E [XY ]−E [X ]E [Y ].

Fact
(a) var [X ] = cov(X ,X )
(b) X ,Y independent⇒ cov(X ,Y ) = 0
(c) cov(a + X ,b + Y ) = cov(X ,Y )
(d) cov(aX + bY ,cU + dV ) = ac ·cov(X ,U) + ad ·cov(X ,V )

+bc ·cov(Y ,U) + bd ·cov(Y ,V ).
Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the
RVs are zero-mean. Then,

cov(aX + bY ,cU + dV ) = E [(aX + bY )(cU + dV )]

= ac ·E [XU] + ad ·E [XV ] + bc ·E [YU] + bd ·E [YV ]

= ac ·cov(X ,U) + ad ·cov(X ,V ) + bc ·cov(Y ,U) + bd ·cov(Y ,V ).
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Summary

Variance

I Variance: var [X ] := E [(X −E [X ])2] = E [X 2]−E [X ]2

I Fact: var [aX + b]a2var [X ]

I Sum: X ,Y ,Z pairwise ind. ⇒ var [X + Y + Z ] = · · ·
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Random Variables so far.

Probability Space: Ω, Pr : Ω→ [0,1], ∑ω∈Ω Pr(w) = 1.

Random Variables: X : Ω→ R.
Associated event: Pr [X = a] = ∑ω:X (ω)=a Pr(ω)

X and Y independent ⇐⇒ all associated events are independent.
Expectation: E [X ] = ∑a aPr [X = a] = ∑ω∈Ω X (ω)Pr(ω).

Linearity: E [X + Y ] = E [X ] + E [Y ].

Variance: Var(X ) = E [(X −E [X ])2] = E [X 2]− (E(X ))2

For independent X ,Y , Var(X + Y ) = Var(X ) + Var(Y ).
Also: Var(cX ) = c2Var(X ) and Var(X + b) = Var(X ).

Poisson: X ∼ P(λ ) E(X ) = λ , Var(X ) = λ .
Binomial: X ∼ B(n,p) E(X ) = np, Var(X ) = np(1−p)

Uniform: X ∼ U{1, . . . ,n} E [X ] = n+1
2 , Var(X ) = n2−1

12 .
Geometric: X ∼G(p) E(X ) = 1

p , Var(X ) = 1−p
p2
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