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1. Random Variables: Brief Review
2. Joint Distributions.

3. Linearity of Expectation
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Definition
A random variable, X, for a random experiment with sample space Q
is a function X : Q — R.

Thus, X(-) assigns a real number X(w) to each o € Q.

Definitions
(a) For a € R, one defines

X (a):={wcQ|X(0) = a}.
(b) For A C R, one defines
X1(A):={wc Q| X(w) c A}.
(c) The probability that X = a is defined as
PriX = a| = Pr[X~'(a)].
(d) The probability that X € A is defined as
PriX e Al = Pr[X~"(A)].
(e) The distribution of a random variable X, is
{(a,PriX=2a]):ac «},
where & is the range of X. Thatis, & = {X(w),®w € Q}.
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PriX =i = (7)p'(1—p)"'. Geometric Distribution: G(p), For i > 1,
Pr[X =il=(1—p)~'p. Poisson: Next up.
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Poisson: Motivation and derivation.

McDonalds: How many arrive at McDonalds in an hour?
Know: average is 1.
What is distribution?
Example: Pr[2A arrivals |?
Assumption: “arrivals are independent.”

Derivation: cut hour into n intervals of length 1/n.
Pr[ two arrivals ] is “(A/n)2” or small if n is large.
Model with binomial.
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Experiment: flip a coin ntimes. The coin is such that Pr[H] = 1/n.
Random Variable: X - number of heads. Thus, X = B(n,A/n).
Poisson Distribution is distribution of X “for large n.”

We expect X < n. For m< none has
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The Poisson distribution is named after:

Siméon Poisson

Siméon Denis Poisson (1781-1840)
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The geometric distribution is named after:
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| could not find a picture of D. Binomial, sorry.
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X = number of H’s: {3,2,2,2,1,1,1,0}.
Thus,
1
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Also,
1 3 3 1
PriX=a=3x-+2x -+1x = =.
Za:ax r| al 3><8+ ><8+ ><8—|—O><8
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Win or Lose.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable X:

{HHH, HHT ,HTH,HTT, THH, THT, TTH, TTT} — {3,1,1,—-1,1,—1,—1,-3}.
3 3 1

1

Can you ever win 07
Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!
It is the average value per experiment, if you perform the experiment

many times:

w, when n>> 1.

The fact that this average converges to E[X] is a theorem:
the Law of Large Numbers. (See later.)
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X1(w)_{ 0, otherwise Xg(a))_{ 0, otherwise
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Multiple Random Variables: setup.

Joint Distribution: {(a,b,Pr[X =a,Y =b]): ac o/, b € #}, where
o/ (A) is possible values of X (Y).

Y PriX=aY=>b=1
ac/ ,be B

Marginal for X: PriX =al =Y e PriX=a,Y = b].
Marginal for Y: PrY = bl =Y ey Pr(iX =a, Y = b].

XY | 1|2 3 X
1 2] 1 1 4
2 0|0 3 3
3 1|0 .2 3
Y | 3] 1 .6

Conditional Probability: PrX = a| Y = b] = P20
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>

>

Events A, B are independent if Prf[An B] = Pr[A]Pr[B].
Events A, B, C are mutually independent if

A, B are independent, A, C are independent, B, C are
independent

and Pr[An BN C] = Pr[A|Pr|B]Pr[C].

» Events {A,,n> 0} are mutually independent if ....

» Example: X,Y € {0,1} two fair coin flips = X, Y,X@ Y are

pairwise independent but not mutually independent.

Example: X,Y,Z € {0,1} three fair coin flips are mutually
independent.
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Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

PrY =b|X = a] = Pr[Y = b], for all aand b.

Fact:

X, Y are independent if and only if
PriX=a,Y =b]= Pr[X = a]Pr[Y = b], forall aand b.

Follows from Pr[An B] = Pr[A|B]Pr[B] (Product rule.)
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Independence: Examples

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: PriX=a,Y =b] = 55, PriX =a] = Pr[Y = b] = {.
Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1
minus number on die 2. X and Y are not independent.

Indeed: Pr[X =12,Y =1] =0+ Pr{X =12]Pr[Y = 1] > 0.
Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y =
number of Hs in last two flips. X and Y are independent.

Indeed:
PriX=a,Y=b]= <3> (i) 27°= <3> 273 x (i) 272 =PriX=2alPr[Y=b].

a a
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Linearity of Expectation

Theorem:
E[X+ Y] = E[X]+E[Y]
E[cX] = cE[X]

Proof: E[X] =Y. pecq X(®) x Plo].

EIX 1 Y] Y (X(0)+ Y(0))Prlo]
wEeN
- Y. X(o)Prio]+ Y(o)Pr[o]
e
- Y. X(w)Pr{o]+ Y. Y(w)Pr(o]

we weN

_ E[X]+ E[Y]
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Indicators

Definition
Let A be an event. The random variable X defined by

1, ffocA
X(“’):{ 0, fo¢gA

is called the indicator of the event A.
Note that Pr[X = 1] = Pr[A] and Pr[X =0] =1 — Prl[A].

Hence,
E[X]=1xPr[X=1]+0x Pr[X =0] = Pr[A].

This random variable X(w) is sometimes written as
1{w € A} or 14(w).

Thus, we will write X =1 4.
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Linearity of Expectation
Theorem: Expectation is linear

Ela1 X1+ -+ anXn] = a1 E[X1]+ - + anE[ Xn]-

Proof:

Elai X1 +---+anXy]
=Y (a1 Xi + -+ anXn) (@) Pr{o]

:Z(a1x1(w)+~--+aan(w))Pf[w]
a1ZX1 Priol+ -+ an ) Xn(0)Prlo]
= a E[X1] +-+anE[Xp).

Note: If we had defined Y = a1 Xj +--- + an X, has had tried to
compute E[Y] =Y, yPr[Y = y], we would have been in trouble!
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Using Linearity - 1: Pips (dots) on dice

Roll a die ntimes.
Xm = number of pips on roll m.
X = Xy +---+ X = total number of pips in nrolls.
E[X] = E[Xi+---+X)]
E[Xi]+---+ E[Xx], by linearity
nE[X;], because the X, have the same distribution

mow 1 1 6x7 1 7
X
EX]=Tx g+ +6xc="2"xe=1.
Hence, .
n
X = —.
EIX]= 7

Note: Computing ¥, xPr[X = x| directly is not easy!
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Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.
X = number of students that get their own assignment back.

X=X+ + X, where
Xm = 1{student m gets his/her own assignment back}.

One has
E[X]

E[Xi+---+ Xn]

E[X1]+---+ E[Xn], by linearity

nE[Xi], because all the X, have the same distribution
nPr[Xy = 1], because X is an indicator

= n(1/n), because student 1 is equally likely

to get any one of the n assignments

= 1.
Note that linearity holds even though the X, are not independent
(whatever that means).

Note: What is Pr[X = m]? Tricky ....
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Flip n coins with heads probability p. X - number of heads
Binomial Distibution: Pr[X = i], for each /.

Prix =i (7).

: . . n ; o
E[X) = Fix PriX == i <i>pl(1 oy
Uh oh. ... Or... a better approach: Let
X — { 1 if ith flip is heads
0 otherwise
E[X]] =1 x Pr["heads"] +0 x Pr["tails"] = p.
Moreover X = Xj +--- X, and
E[X] = E[Xi]+ E[Xe] + -+ E[Xs] = n x E[X]]= np.
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Assume A and B are disjoint events. Then 1, 5(®) = 14(w) + 15(®).
Taking expectation, we get

PrlAUB] = E[1au8] = E[1a+ 18] = E[14] + E[18] = Pr[A] + Pr[B].
In general, 14,5(®) = 14(®) +1g(®) — 1 4-8(®).
Taking expectation, we get Pr[AU B] = Pr[A]+ Pr[B] — Pr|[AnB].

Observe that if Y(w) = b for all o, then E[Y] = b.
Thus, E[X+ b] = E[X]+b.
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Empty Bins

Experiment: Throw m balls into n bins.

Y - number of empty bins.

Distribution is horrible.

Expectation? X; - indicator for bin i being empty.
Y=Xi+- X

PriX; =1]=(1-1)™ — E[Y]=n(1 - 1)™.

Forn=mandlarge n, (1—1/n)"~ 1.

2 ~0.368n empty bins on average.
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Geometric Distribution: Expectation

X=pG(p), ie., PriX=n=(1-p)" 'p,n>1.

One has _
E[X] = Z nPr[X =n] = Z
Thus,
E[X] = p+2(1-p)p+3(1-p)’p+4(1-p)°p+
(1-pP)EX] = (1-p)p+2(1-p)?p+3(1-p)°p+--

PEIX] = p+ (1-p)p+ (1-p)°p+ (1-p)°p+--
by subtracting the previous two identities

= iPr[X:n]:i

n=1

Hence,
E[X]= 1
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Review: Harmonic sum

H(n)—1+1—|— +l~/n1dx—ln(n)
N 2 n~Jox '

1/2

—2 1/4 /5

0 1 2 3 4 ;1 li) &
A good approximation is

H(n) ~ In(n) 4y where v~ 0.58 (Euler-Mascheroni constant).
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Consider this stack of cards (no gluel):

Li—

If each card has length 2, the stack can extend H(n) to the right of the
table. As nincreases, you can go as far as you want!



Paradox

par-a-dox
/'pera daks/

a statement or proposition that, despite sound (or apparently sound) reasoning from
acceptable premises, leads to a conclusion that seems senseless, logically
unacceptable, or self-contradictory.

"a potentially serious conflict between quantum mechanics and the general theory of
relativity known as the information paradox"

« aseemingly absurd or self-contradictory statement or proposition that when
investigated or explained may prove to be well founded or true.
"in a paradox, he has discovered that stepping back from his job has increased the
rewards he gleans from it"
synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency,

incongruity; More

« a situation, person, or thing that combines contradictory features or qualities.
“the mingling of deciduous trees with elements of desert flora forms a fascinating
ecological paradox"
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https://www.youtube.com/watch?v=53FMsMHWcVs
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The cards have width 2.


https://www.youtube.com/watch?v=53FMsMHWcVs

Stacking

S A
\d1+1/2 *'rr

H(n+1)

nr=1—x
=c=1/(n+1)

l—z =z

The cards have width 2. Induction shows that the center of gravity
after n cards is H(n) away from the right-most edge.
Video.


https://www.youtube.com/watch?v=53FMsMHWcVs
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Y = f(X) is Random Variable.
Distribution of Y from distribution of X.



