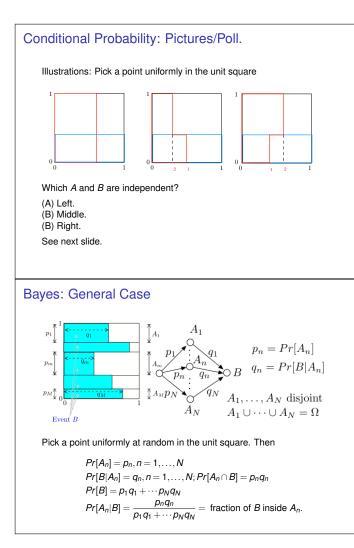
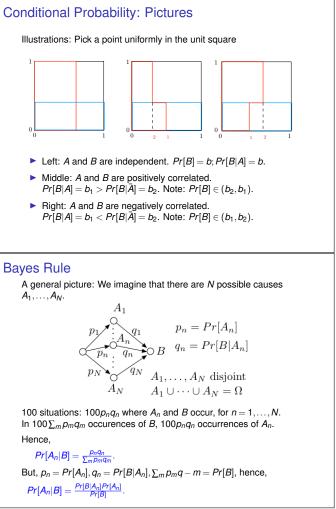
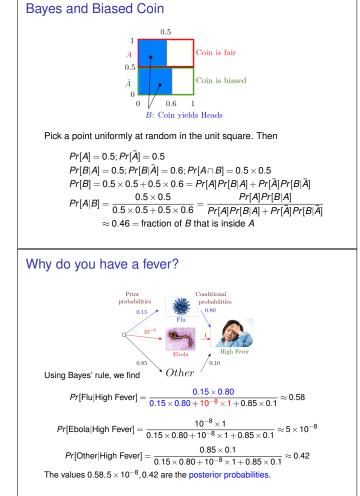
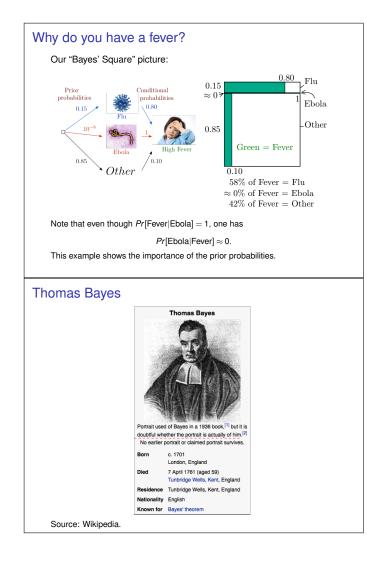
Today	Poll: blows my mind.	Probability Basics.
Probability: Keep building it formally And our intuition.	 Flip 300 million coins. Which is more likely? (A) 300 million heads. (B) 300 million tails. (C) Alternating heads and tails. (D) A tail every third spot. Given the history of the universe up to right now. What is the likelihood of our universe? (A) The likelihood is 1. Cuz here it is. (B) As likely as any other. Cuz of probability. (C) Well. Quantum. IDK- TBH. Perhaps a philosophical ("wastebasket") question. Also, "cuz" == "because" 	Probability Space. 1. Sample Space: Set of outcomes, Ω . 2. Probability: $Pr[\omega]$ for all $\omega \in \Omega$. 2.1 $0 \le Pr[\omega] \le 1$. 2.2 $\sum_{\omega \in \Omega} Pr[\omega] = 1$. Example: Two coins. 1. $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!) 2. $Pr[HH] = \cdots = Pr[TT] = 1/4$
Consequences of Additivity	Add it up. Poll.	Conditional Probability.
Theorem (a) Inclusion/Exclusion: $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];$ (b) Union Bound: $Pr[A_1 \cup \dots \cup A_n] \leq Pr[A_1] + \dots + Pr[A_n];$ (c) Law of Total Probability: If A_1, \dots, A_N are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then $Pr[B] = Pr[B \cap A_1] + \dots + Pr[B \cap A_N].$ Proof Idea: Total probability.	 What does Rao mean by "Add it up." (A) Organize intuitions/proofs around <i>Pr</i>[ω]. (B) Organize intuition/proofs around <i>Pr</i>[<i>A</i>]. (C) Some weird song whose refrain he heard in his youth. (A), (B), and (C) 	Definition: The conditional probability of <i>B</i> given <i>A</i> is $Pr[B A] = \frac{Pr[A \cap B]}{Pr[A]}$ $A \cap B$ In <i>A</i> ! In <i>B</i> ? Must be in <i>A</i> \cdot B. $Pr[B A] = \frac{Pr[A \cap B]}{Pr[A]}.$ Note also: $Pr[A \cap B] = Pr[B A]Pr[A]$
Add it up!		

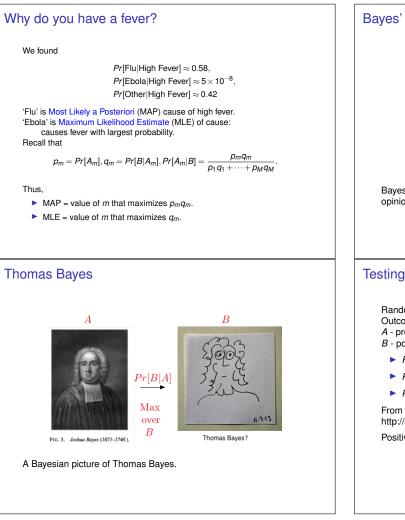
Product Rule Def: $Pr[B A] = \frac{Pr[A \cap B]}{Pr[A]}$.	Simple Bayes Rule.	Is you coin loaded? Your coin is fair w.p. 1/2 or such that <i>Pr</i> [<i>H</i>] = 0.6, otherwise. You flip your coin and it yields heads. What is the probability that it is fair? Analysis:
Also: $Pr[A \cap B] = Pr[B A]Pr[A]$	$Pr[A B] = rac{Pr[A\cap B]}{Pr[B]}, Pr[B A] = rac{Pr[A\cap B]}{Pr[A]}.$	A = 'coin is fair', $B =$ 'outcome is heads'
Theorem Product Rule	$Pr[A \cap B] = Pr[A B]Pr[B] = Pr[B A]Pr[A].$	We want to calculate $P[A B]$.
Let A_1, A_2, \ldots, A_n be events. Then	Bayes Rule: $Pr[A B] = \frac{Pr[B A Pr[A]}{Pr[B]}$.	We know $P[B A] = 1/2$, $P[B \overline{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\overline{A}]$
$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2 A_1] \cdots Pr[A_n A_1 \cap \cdots \cap A_{n-1}].$	-2000000000000000000000000000000000000	Now,
		$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B A] + Pr[\bar{A}]Pr[B \bar{A}]$ = (1/2)(1/2) + (1/2)0.6 = 0.55. Thus, $Pr[A B] = \frac{Pr[A]Pr[B A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$
Independence	Independence and conditional probability	Conditional Probability: Review
 Definition: Two events <i>A</i> and <i>B</i> are independent if Pr[A∩B] = Pr[A]Pr[B]. Examples: When rolling two dice, A = sum is 7 and B = red die is 1 are independent; Pr[A∩B] = ¹/₃₆, Pr[A]Pr[B] = (¹/₆)(¹/₆). When rolling two dice, A = sum is 3 and B = red die is 1 are not independent; Pr[A∩B] = ¹/₃₆, Pr[A]Pr[B] = (²/₃₆)(¹/₆). When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent; Pr[A∩B] = ¹/₄, Pr[A Pr[B] = (¹/₂)(¹/₂). When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent; Pr[A∩B] = (⁸/₂₇)(⁸/₂₇). 	Fact: Two events <i>A</i> and <i>B</i> are independent if and only if Pr[A B] = Pr[A]. Indeed: $Pr[A B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that $Pr[A B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$	Recall: > $Pr[A B] = \frac{Pr[A \cap B]}{Pr[B]}$. > Hence, $Pr[A \cap B] = Pr[B]Pr[A B] = Pr[A]Pr[B A]$. > A and B are positively correlated if $Pr[A B] > Pr[A]$, i.e., if $Pr[A \cap B] > Pr[A]Pr[B]$. > A and B are negatively correlated if $Pr[A B] < Pr[A]$, i.e., if $Pr[A \cap B] < Pr[A]Pr[B]$. > A and B are independent if $Pr[A B] = Pr[A]$, i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$. > A and B are independent if $Pr[A B] = Pr[A]$, i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$. > Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(Pr[A B] = 1 > Pr[A])$ > Note: $A \cap B = \emptyset \Rightarrow A$ and B are negatively correlated. $(Pr[A B] = 0 < Pr[A])$

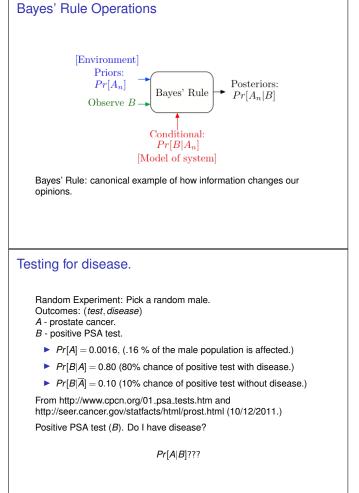


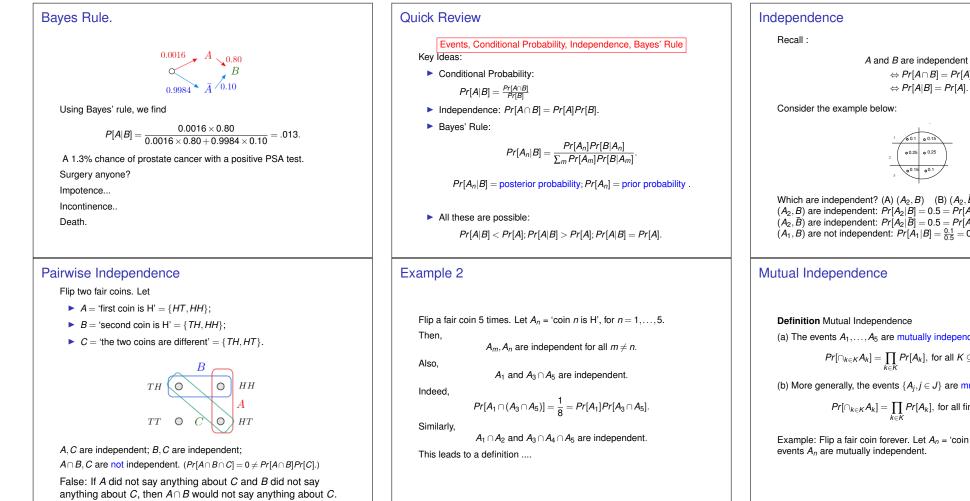












 $\Leftrightarrow \Pr[A \cap B] = \Pr[A]\Pr[B]$ $\Leftrightarrow \Pr[A|B] = \Pr[A].$ Which are independent? (A) (A_2, B) (B) (A_2, \overline{B}) (C) (A_1, B) . (A_2, \overline{B}) are independent: $Pr[A_2|\underline{B}] = 0.5 = Pr[A_2]$. (A_2, \vec{B}) are independent: $Pr[A_2|\vec{B}| = 0.5 = Pr[A_2]$. (A_1, \vec{B}) are not independent: $Pr[A_1|\vec{B}| = \frac{0.5}{0.5} = 0.2 \neq Pr[A_1] = 0.25$.

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$r[\cap_{k\in K}A_k] = \prod_{k\in K} Pr[A_k], \text{ for all } K \subseteq \{1,\ldots,5\}.$$

(b) More generally, the events $\{A_i, j \in J\}$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K} Pr[A_k], \text{ for all finite} K \subseteq J.$$

Example: Flip a fair coin forever. Let A_n = 'coin *n* is H.' Then the events A_n are mutually independent.

Mutual Independence

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k .

Conditional Probability: Review

Recall:

- ▶ $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$
- ► Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A], i.e., if $Pr[A \cap B] > Pr[A]Pr[B]$.
- A and B are negatively correlated if Pr[A|B] < Pr[A], i.e., if Pr[A∩B] < Pr[A]Pr[B].</p>
- A and B are independent if Pr[A|B] = Pr[A], i.e., if Pr[A∩B] = Pr[A]Pr[B].
- ▶ Note: $B \subset A \Rightarrow A$ and B are positively correlated. (Pr[A|B] = 1 > Pr[A])
- ▶ Note: $A \cap B = \emptyset \Rightarrow A$ and B are negatively correlated. (Pr[A|B] = 0 < Pr[A])

Maii	n results:
►	Bayes' Rule: $Pr[A_m B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
•	Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2 A_1] \cdots Pr[A_n A_1 \cap \cdots \cap A_{n-1}].$

Quick Review.