Today.

Polynomials.

Secret Sharing.

Correcting for loss or even corruption.

Polynomial: $P(x) = a_d x^4 + \cdots + a_0$

Line:
$$P(x) = a_1x + a_0 = mx + b$$

$$P(x)$$

$$P(x) = a_1x + a_0 = mx + b$$

Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$

Secret Sharing.

Share secret among n people.

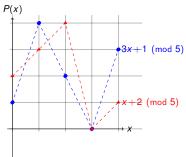
Secrecy: Any k-1 knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.

The idea of the day.

Two points make a line.

Lots of lines go through one point.

Polynomial: $P(x) = a_d x^4 + \cdots + a_0 \pmod{p}$



Finding an intersection. $x+2 \equiv 3x+1 \pmod{5}$

 $+2 \equiv 3x + 1 \pmod{5}$

 $\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$

3 is multiplicative inverse of 2 modulo 5. Good when modulus is prime!!

Polynomials

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: $a_1, \ldots, a_d \in \Re$, use $x \in \Re$.

Polynomials P(x) with arithmetic modulo p: ¹ $a_i \in \{0, \dots, p-1\}$

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p},$$
 for $x \in \{0, \dots, p-1\}.$

Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ²

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

¹A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0, ..., p-1\}, + \pmod{p}, * \pmod{p}).$

²Points with different *x* values.

Poll.

Two points determine a line. What facts below tell you this?

Say points are $(x_1, y_1), (x_2, y_2)$.

- (A) Line is y = mx + b.
- (B) Plug in a point gives an equation: $y_1 = mx_1 + b$
- (C) The unknowns are m and b.
- (D) If equations have unique solution, done.

All true.

Flow Poll.

Why solution? Why unique?

- (A) Solution cuz: $m = (y_2 y_1)/(x_2 x_1), b = y_1 m(x_1)$
- (B) Unique cuz, only one line goes through two points.
- (C) Try: $(m'x + b') (mx + b) = (m' m)x + (b b') = ax + c \neq 0$.
- (D) Either $ax_1 + c \neq 0$ or $ax_2 + c \neq 0$.
- (E) Contradiction.

Flow poll. (All true. (B) is not a proof, it is restatement.)

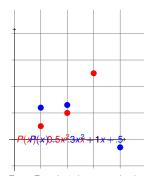
Notation: two points on a line.

Polynomial: $a_n x^n + \cdots + a_0$.

Consider line: mx + b

- (A) $a_1 = m$
- (B) $a_1 = b$
- (C) $a_0 = m$
- (D) $a_0 = b$.
- (A) and (D)

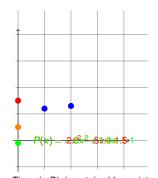
3 points determine a parabola.



Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

 3 Points with different x values.

2 points not enough.



There is P(x) contains blue points and any(0,y)!

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0).

Secrecy: Any k-1 shares give nothing.

Knowing $\leq k-1$ pts \implies any P(0) is possible.

Poll:example.

The polynomial from the scheme: $P(x) = 2x^2 + 1x + 3 \pmod{5}$. What is true for the secret sharing scheme using P(x)?

- (A) The secret is "2".
- (B) The secret is "3".
- (C) A share could be (1,5) cuz P(1) = 5
- (D) A share could be (2,4)
- (E) A share could be (0,3)

In general..

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Solve...

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

From d+1 points to degree d polynomial?

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second...

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

And the line is...

 $x+2 \mod 5$.

Another Construction: Interpolation!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try
$$(x-2)(x-3) \pmod{5}$$
.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0);(2,1);(3,0)$.

$$\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$$
 contains $(1,0);(2,0);(3,1)$.

But wanted to hit (1,2); (2,4); (3,0)!

$$P(x) = 2\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$.

The same as before!

Quadratic

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

```
\begin{array}{rclcrcl} P(1) = a_2 + a_1 + a_0 & \equiv & 2 \pmod{5} \\ P(2) = 4a_2 + 2a_1 + a_0 & \equiv & 4 \pmod{5} \\ P(3) = 4a_2 + 3a_1 + a_0 & \equiv & 0 \pmod{5} \\ & & & & & & & & & & \\ a_2 + a_1 + a_0 & \equiv & 2 \pmod{5} \\ & & & & & & & & & \\ 3a_1 + 2a_0 & \equiv & 1 \pmod{5} \\ & & & & & & & & \\ 4a_1 + 2a_0 & \equiv & 2 \pmod{5} \\ & & & & & & & \\ \text{Subtracting 2nd from 3rd yields: } a_1 = 1. \\ & & & & & & \\ a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5} \\ & & & & & \\ a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}. \\ & & & & & \\ \text{So polynomial is } 2x^2 + 1x + 4 \pmod{5} \end{array}
```

Fields...

Flowers, and grass, oh so nice.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

 $\hbox{E.g., Reals, rationals, complex numbers.}\\$

Not E.g., the integers, matrices.

We will work with polynomials with arithmetic modulo *p*.

Addition is cool. Inherited from integers and integer division (remainders).

Multiplicative inverses due to gcd(x,p) = 1, for all $x \in \{1,...,p-1\}$

Delta Polynomials: Concept.

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1

Given d+1 points, use Δ_i functions to go through points?

$$(x_1,y_1),\ldots,(x_{d+1},y_{d+1}).$$

Will $y_1\Delta_1(x)$ contain (x_1,y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2,y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain

 (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \dots + y_{d+1} \Delta_{d+1}(x).$$

Example.

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\begin{array}{l} \Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = (x-3)(-2)^{-1} \\ \Delta_1(x) = (x-3)(1-3)^{-1} = (x-3)(-2)^{-1} \\ = 2(x-3) = 2x - 6 = 2x + 4 \pmod{5}. \end{array}$$

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

$$\begin{array}{l} \Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = (2)^{-1}(x-2)(x-3) = 3(x-2)(x-3) \\ = 3x^2 + 3 \pmod{5} \end{array}$$

Put the delta functions together.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_{i}(x) = \frac{\prod_{j \neq i} (x - x_{j})}{\prod_{j \neq i} (x_{i} - x_{j})} = \prod_{j \neq i} (x - x_{j}) \prod_{j \neq i} (x_{i} - x_{j})^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

"Denominator" makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x)$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$. Degree d polynomial!

Construction proves the existence of a polynomial!

In general.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} = \prod_{j \neq i} (x - x_j) \prod_{j \neq i} (x_i - x_j)^{-1}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Construction proves the existence of the polynomial!

Poll

Mark what's true.

(A)
$$\Delta_1(x_1) = y_1$$

(B)
$$\Delta_1(x_1) = 1$$

(C)
$$\Delta_1(x_2) = 0$$

(D) $\Delta_1(x_3) = 1$

(E)
$$\Delta_2(x_2) = 1$$

(F)
$$\Delta_2(x_1) = 0$$

(B), (C), and (E)

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Roots fact: Any nontrivial degree *d* polynomial has at most *d* roots.

Non-zero line (degree 1 polynomial) can intersect y = 0 at only one x.

A parabola (degree 2), can intersect y = 0 at only two x's.

Proof:

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Must prove Roots fact.

Polynomial Division.

Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$4x^2-3x+2\equiv (x-3)(4x+4)+4\pmod 5$$

In general, divide $P(x)$ by $(x-a)$ gives $Q(x)$ and remainder r .
That is, $P(x)=(x-a)Q(x)+r$

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any k knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Secrecy: Any k-1 knows nothing.

Knowing $\leq k-1$ pts, any P(0) is possible.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

 $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller

degree so use the induction hypothesis.

d+1 roots implies degree is at least d+1. **Roots fact:** Any degree d polynomial has at most d roots.

Minimality.

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it,

And I say it again,

There is always a prime

Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

.. and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

- Evaluate degree k 1 polynomial n times using log p-bit numbers.
- 2. Reconstruct secret by solving system of *k* equations using log *p*-bit arithmetic.

A bit more counting.

What is the number of degree d polynomials over GF(m)?

```
▶ m^{d+1}: d+1 coefficients from \{0, ..., m-1\}.
```

 $ightharpoonup m^{d+1}$: d+1 points with y-values from $\{0,\ldots,m-1\}$

Infinite number for reals, rationals, complex numbers!

Summary

Two points make a line.

Compute solution: *m*, *b*.

Unique

Assume two solutions, show they are the same.

Today: d + 1 points make a unique degree d polynomial.

Cuz:

Solution: lagrange interpolation.

Unique: Roots fact: Factoring sez (x-r) is root.

Induction, says only d roots.

Apply: P(x), Q(x) degree d.

P(x) - Q(x) is degree $d \implies d$ roots.

P(x) = Q(x) on d+1 points $\implies P(x) = Q(x)$.

Secret Sharing:

k points on degree k-1 polynomial is great! Can hand out n points on polynomial as shares.