CS 70 Discrete Mathematics and Probability Theory Spring 2022 Koushik Sen and Satish Rao DIS 11A

1 Sum of Poisson Variables

Assume that you were given two independent Poisson random variables X_1, X_2 . Assume that the first has mean λ_1 and the second has mean λ_2 . Prove that $X_1 + X_2$ is a Poisson random variable with mean $\lambda_1 + \lambda_2$. *Hint*: Recall the binomial theorem.

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

2 Variance

(a) Let X be a random variable representing the outcome of the roll of one fair 6-sided die. What is Var(X)?

(b) Let Z be a random variable representing the average of n rolls of a fair die 6-sided die. What is Var(Z)?

3 Covariance

(a) We have a bag of 5 red and 5 blue balls. We take two balls uniformly at random from the bag without replacement. Let X_1 and X_2 be indicator random variables for the events of the first and second ball being red, respectively. What is $cov(X_1, X_2)$? Recall that $cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$.

(b) Now, we have two bags A and B, with 5 red and 5 blue balls each. Draw a ball uniformly at random from A, record its color, and then place it in B. Then draw a ball uniformly at random from B and record its color. Let X_1 and X_2 be indicator random variables for the events of the first and second draws being red, respectively. What is $cov(X_1, X_2)$?