CS 70 Discrete Mathematics and Probability Theory Spring 2022 Koushik Sen and Satish Rao DIS 0A

1 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

(a)
$$P \wedge (Q \vee P) \equiv P \wedge Q$$

- (b) $(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$
- (c) $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

2 Propositional Practice

Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.

- (a) There is a real number which is not rational.
- (b) All integers are natural numbers or are negative, but not both.
- (c) If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3.

(d)
$$(\forall x \in \mathbb{Z}) (x \in \mathbb{Q})$$

- (e) $(\forall x \in \mathbb{Z}) (((2 \mid x) \lor (3 \mid x)) \implies (6 \mid x))$
- (f) $(\forall x \in \mathbb{N}) ((x > 7) \implies ((\exists a, b \in \mathbb{N}) (a + b = x)))$

3 Converse and Contrapositive

Consider the statement "if a natural number is divisible by 4, it is divisible by 2".

- (a) Write the statement in propositional logic. Prove that it is true or give a counterexample.
- (b) Write the inverse of the implication in English and in propositional logic. Prove that it is true or give a counterexample. (The inverse of an implication $P \implies Q$ is $\neg P \implies \neg Q$.)
- (c) Write the converse of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
- (d) Write the contrapositive of the implication in English and in propositional logic. Prove that it is true or give a counterexample.

4 Equivalences with Quantifiers

Evaluate whether the expressions on the left and right sides are equivalent in each part, and briefly justify your answers.

(a)	$\forall x ((\exists y Q(x, y)) \Rightarrow P(x))$	$\forall x \exists y \left(Q(x, y) \Rightarrow P(x) \right)$
(b)	$ \neg \exists x \forall y (P(x,y) \Rightarrow \neg Q(x,y))$	$\forall x ((\exists y P(x,y)) \land (\exists y Q(x,y)))$
(c)	$\forall x \exists y (P(x) \Rightarrow Q(x,y))$	$\forall x \left(P(x) \Rightarrow (\exists y \ Q(x,y)) \right)$